Sinn und Zweck des Potenzialausgleichs*
Elektrische Geräte können aufgrund unterschiedlicher elektrischer Spannungen Potenzialunterschiede aufweisen. Wenn diese Unterschiede groß genug sind, kann es zu gefährlichen Stromflüssen kommen, insbesondere in fehlerhaften Situationen.
Der Potenzialausgleich, auch bekannt als Erdung oder Erdungssystem, bezieht sich auf eine elektrische Verbindung zwischen verschiedenen elektrischen Geräten, um sicherzustellen, dass sie auf dem gleichen elektrischen Potenzial liegen. Das Hauptziel des Potenzialausgleichs ist es, Gefahren durch unerwünschte elektrische Spannungen zu minimieren und ein sicheres Umfeld für Personen und elektrische Systeme zu schaffen. Im Stromkabel gibt es dafür den sogenannten Schutzleiter (PE).
Mögliche Auswirkungen auf das Nutzsignal
Eine potenzielle Störgröße mit klanglichen Auswirkungen stellt die Potenzialdifferenz zwischen dem Gehäuse und dem Schutzleiter dar. In der Regel ist die Signalmasse mit dem Gehäuse verbunden. Werden verschiedene Geräte mit jeweils unterschiedlichen Potenzialdifferenzen miteinander verbunden, fließen über die Signalmasseleitungen Ausgleichströme, die das Nutzsignal modulieren können. Es geht also darum die Potenzialdifferenz klein zu halten.
Wechselstrom (AC – Alternating Current)
Bei einem Wechselstromsystem fließt der Strom periodisch in zwei Richtungen, hin und zurück, und ändert kontinuierlich seine Polarität. Die Bewegung des Stroms erfolgt aufgrund der Wechselspannung, die in der Regel in einer sinusförmigen Wellenform vorliegt. In einem solchen System spielen die Außenleiter, der Neutralleiter und der Schutzleiter unterschiedliche Rollen. Übliche Nennwerte der Netzfrequenz sind je nach Region verschieden und betragen 50 Hz (Europa, Teile von Asien) und 60 Hz (Nordamerika).
Stromkabelaufbau für Wechselstrom*
Der Außenleiter (auch Phase genannt, L1 – Kabelfarbe Braun), ist der stromführende Leiter. In einem Wechselstromsystem gibt es normalerweise mehrere Außenleiter, welche die Energie vom Stromerzeuger zu den Verbrauchern transportieren. Diese Außenleiter sind normalerweise in einer Phase verschoben, was bedeutet, dass der Strom in jedem Leiter zu unterschiedlichen Zeiten seinen Höchst- und Nulldurchgang erreicht. Der Strom fließt abwechselnd in positive und negative Richtungen, je nachdem, wie sich die Polarität der Spannung ändert.
Der Neutralleiter/Nullleiter (N – Kabelfarbe Blau) führt den Strom vom Verbraucher zur Stromquelle zurück.Der Neutralleiter trägt dazu bei, eine stabile und gleichmäßige Spannungsversorgung in elektrischen Schaltungen sicherzustellen. Er ermöglicht es, dass die Spannung in einem Wechselstromsystem konstant bleibt, indem er den Rückfluss des Stroms sicherstellt.
Die Aufgabe des Schutzleiters (PE – Kabelfarbe Gelb/Grün) ist es die gefährliche Berührungsspannung am leitfähigen Gehäuse gegen Erde abzuleiten. Im Normalbetrieb sollte kein Strom im Schutzleiter fließen. Er wird nur im Falle eines Fehlers verwendet, wenn ein Gerät oder Gehäuse unter Spannung steht. In solchen Fällen fließt der Strom über den Schutzleiter zur Erde, was die Gefahr eines elektrischen Schlags für die Benutzer reduziert.
Die Gerätestecker
Steckverbinder sind international durch die IEC genormt. Einphasige Ausführungen sind in der Norm IEC 60320 festgelegt. Als Gerätestecker werden Steckverbinder mit Kontaktstiften bezeichnet, die direkt in die Endgeräte eingebaut werden. Daran passen die Netzleitungen mit der Gerätekupplung auf der einen Seite und einem Schutzkontaktstecker (Schukostecker) auf der anderen Seite.
Während die Gerätekupplung nur in eine Richtung in den Gerätestecker passt, kann der Schutzkontaktstecker gedreht werden. Dadurch wird dann auch die Phase vertauscht. Und genau diese Zufälligkeit, wo die Phase aktuell anliegt, ist das Problem!
Kaltgerätestecker (IEC-60320 C13/C14)
Kaltgerätestecker nach der Norm IEC 60320 C14 (DIN VDE 0625) werden für den Stromanschluss von Geräten verwendet, welche im Betrieb keine nennenswerte Wärme entwickeln. Die maximale Temperatur an den Verbindungsstiften des Steckers darf 70 °C nicht überschreiten. Der maximale Stromdurchfluss ist auf 10 A festgelegt. Bei HiFi-Geräten und Netzteilen ist der Kaltgerätestecker C14 sehr verbreitet. C13 ist die passende Gerätekupplung.
Ob ein Class A Verstärker keine nennenswerten Temperaturen entwickelt, darf natürlich bezweifelt werden. Aber hier geht es um die Verbindungsstifte.
Die Kaltgerätekupplungen/-stecker sind dreipolig, mit Außenleiter (Phase, L1 – Kabelfarbe Braun), Neutralleiter (N – Kabelfarbe Blau) und Schutzleiter (PE – Kabelfarbe Gelb/Grün). Blickt man von vorne auf den Gerätestecker, Schutzleiter PE oben, so ist gemäß Anschlussnorm der Außenleiter L (Phase) links.
Kaltgerätestecker (IEC-60320 C19/C20)
Für mehr Strombedarf gibt es eine Kaltgerätesteckervariante für 16 A. Sie ist etwas größer und die Kontakte sind um 90° gedreht. Die Bezeichnung C19 beschreibt die Kupplung am Stromkabel, C20 den Einbaustecker am Gerät. Leistungsstarke Amplifier und Power Conditioners werden oft damit ausgestattet.
Exkurs: die Qualität von Netzleitungen
Wo hohe Ströme fließen, solltest du an der Qualität der Netzleitung nicht sparen. Es geht mir hier vor allem um die Stromleitfähigkeit und um die Minimierung der Übergangswiderstände bei Stecker und Kupplung.
Ich nutze natürlich die Netzleitungen von meinem Geschäftspartner Bernd von fis Audio. Besonders die fis BF Blackmagic Netzleitung > fis-audio.de haben es mir angetan. Die Ausführung mit Furutech FI-50 NCF (R) Anschlüssen ist besonders gut.
