Veröffentlicht am

HQPlayer Produkte und Konfiguration

Einleitung

Es hat sich herumgesprochen, dass der fis Audio PC für das DSD Upsampling in höchster Qualität steht. Ich empfehle dafür HQPlayer Embedded – Signalyst. Mich erreichen viele Fragen zur bestmöglichen Konfiguration des HQPlayers, welche ich mit diesem Newsletter beantworten möchte.

In den Grundlagen gehe ich kurz zu den Vorteilen des (externen) Upsamplings ein.

Grundlagen

Upsampling

Wenn du einen DAC mit zum Beispiel einem ESS Sabre oder AKM Chip hast, findet zwangsläufig ein internes Upsampling in den MHz-Bereich statt. Nur so kann der Delta-Sigma-Modulator des Chips den Bitstream erzeugen. So wird auch eine Quelldatei im Format PCM in DSD umgewandelt. Siehe: Audio PC Upsampling.

Filterqualitäten

Bei einer CD (44,1 kHz) darf der hörbare Bereich nur bis maximal 22,05 kHz gehen. Grundlage ist das Nyquist-Shannon-Abtasttheorem, welches nur die halbe Abtastrate (Nyquist-Frequenz) berücksichtigen soll. Wird das Abtasttheorem durch eine zu niedrige Abtastrate verletzt, so werden Frequenzanteile, die ursprünglich höher waren als die halbe Abtastrate, als niedrigere Frequenzen interpretiert, da für diese eine Unterabtastung stattfindet. Dieser Effekt ist dann leider hörbar. Das unerwünschte Phänomen wird Alias-Effekt genannt. Die sogenannten Spiegelfrequenzen sollen durch Filter ausgesperrt werden, weshalb dieses Filter oft auch Antialiasing-Filter genannt werden.

Es kommt daher auf die Filterqualität an, welche Frequenzen in der Praxis durchgelassen werden (Passband), ab wann die Sperrwirkung (Cutoff) einsetzt und wie lange es dauert (Transitionsbereich), bis der Tiefpassfilter seine volle Wirkung (Stopband) entfaltet. Unabhängige Messungen haben gezeigt, dass die Filter vom HQPlayer sehr gut konstruiert sind.

Wenn die Sperrwirkung sehr tief liegt, spricht man von einer extrem hohen Dämpfung. Das ist eine gute Sache, weil Spiegelfrequenzen effektiv unterdrückt werden. Eine hohe Dämpfung führt zu weniger Lärmartefakten und auch zu einer besseren Rekonstruktionsgenauigkeit.

Ein Upsampling auf höhere Frequenzen bewirkt, dass die Nyquist-Frequenz höher liegt. Das hat Vorteile auf die Filterkonstruktion, die weniger steil ausfallen müssen und dadurch weniger Pre-Ringing und Post-Ringing haben.

Modulatoren

Dein DAC führt in der Regel in einem zweistufigen Verfahren ein Oversampling in den gewünschten MHz-Bereich durch. Das sind oft 5,6448 MHz (44.1kHz x 128 = 5644800 kHz), welches DSD128 entspricht.

Dann übernimmt der Modulator die Arbeit, indem die digitalen Samples mit 0 und 1 in den Eingangsdifferenzkonverter gehen.

Ein entstehender Messfehler wird integriert (im Bild engl. „Integrator“) und über eine Gegenkopplung schrittweise kompensiert. Die Anzahl der Integratoren bzw. die Anzahl der Gegenkopplungsschleifen charakterisieren die Ordnung des ΔΣ-Modulators. Je höher die Ordnung ist, umso stärker wird die Verschiebung des Rauschens, umso höhere Frequenzen können genutzt werden. 

Der Komparator vergleicht, ob sein Eingangssignal größer oder kleiner als ein bestimmter Schwellenwert ist und gibt ein entsprechendes Ein-Bit Signal, den Bitstream aus. Dieser Bitstream wird an einen DDC (Digital-Digital-Converter) solange in eine Gegenkopplungsschleife (negative feedback) abgezweigt, bis die gewünschte Signalqualität erreicht ist. Dieser Zyklus wiederholt sich pro Abtasttakt.

Der fertige Bitstream geht nun an den eigentlichen DAC (Digital-Analog-Converter). Dieser hat die Aufgabe den digitalen Datenstrom in ein analoges Signal zu wandeln. Dabei muss zwingend ein analoger Tiefpassfilter eingesetzt werden.

Vorteile des externen Upsamplings

Da DACs konstruktionsbedingt nie die Rechenleistung eines Audio PCs erreichen können, sind sie oft auch in der Signalverarbeitung auf einfache Standards wie Interpolation und Festkomma-Berechnungen und Modulatoren niedriger Ordnung angewiesen.

Bei Delta-Sigma-DACs erfolgt vor der Wandlung in Analog eine Konvertierung in DSD. Warum also nicht gleich DSD mit einem Audio PC unter Umgehung der DAC-internen Oversamplingstufen durchführen? Selbst bei anderen DAC Architekturen wie R2R Ladder DACs sind Klangsteigerungen durch externes Upsampling möglich.

Im Bild unten wird in der ersten Reihe die Verarbeitung im DAC ohne externes Upsampling gezeigt. In der zweiten Reihe erfolgt das Upsampling durch den HQPlayer und entlastet den DAC in seiner Arbeit.

In der letzten Reihe wird die bestmögliche Kombination dargestellt: Der HQPlayer macht das Upsampling und erzeugt den Bitstream. Der DAC muss nur noch seiner eigentlichen Aufgabe nachkommen: Nämlich die Wandlung von Digital zu Analog.

Weitere Informationen findest du hier: Wie arbeitet ein DAC und was kann Upsampling bewirken?

Signalyst

Produkte

Signalyst wurde von Jussi Laako in Finnland gegründet und ist ein Lösungsanbieter für die hochwertige Audiowiedergabe bei Verbrauchern und für Mess-, Aufnahme- und Wiedergabesysteme für Tonstudios.

HQPlayer Desktop

Unter den Endverbrauchern dürfte der HQPlayer Desktop das bekannteste Produkt sein. Es ist für die Betriebsysteme Windows, macOS und Linux erhältlich. Das Installationspaket enthält unter anderem auch den HQPlayer Client zur Steuerung, während der Desktop den eigentlichen Rechenkern beinhaltet. Enthalten ist auch das Handbuch.

Das Lizenzmodell ist einfach gehalten. Der Kunde kauft die Lizenz und kann diese für einen beliebigen Computer verwenden. Er kann die Lizenz auch auf unterschiedlichen Computern verwenden, aber nicht parallel. Ein Online Abgleich verhindert die missbräuchliche Verwendung. Die Lizenz ist unbefristet für die Version gültig, für die sie erworben wurde. Derzeit ist es die Version 5.0.0 und höher. Bisher war es so, dass erst dann eine neue Lizenz erworben musste, wenn die Versionierung einen höheren Sprung machte. Also zuletzt von Version 4.0.0 auf 5.0.0. In der Regel gibt es einen Rabatt. Man kann aber auch einfach die letzte Version behalten, da sie unbefristet nutzbar ist.

HQPlayer Embedded

Dieses Produkt war ursprünglich für Hardware Hersteller gedacht, die in ihren Audio Produkten ein Upsampling ermöglichen wollten. Das erklärt, warum die Konfiguration maximal Bedienerunfreundlich ist. Denn der Endkunde hatte damit nichts zu tun. Voraussetzung ist das Betriebssystem Linux. Nun erfreut es sich jedoch auch bei den Endverbrauchern zunehmender Beliebtheit und deshalb schreibe ich diesen Leitfaden.

Die Beliebtheit hat seinen Grund. Für HQPlayer Embedded stellt Jussi Laako ein eigenes Betriebssystem kostenlos zur Verfügung: Das HQPlayer OS! Es basiert auf einen Low-Latency Linux Kernel (frühere Versionen hatten einen Echtzeit Kernel) und das Betriebssystem hat nur rund 20 Prozesse am Laufen. Zum Vergleich: Unter Windows 11 Pro kommst du ohne Probleme auf 160 Prozesse und mehr. Windows ist auch kein Echtzeit Betriebssystem und hat mit den Latenzen so seine Probleme. Deshalb schwören viele auf das audiophile abgespeckte HQPlayer OS, welches wir auch für den fis Audio PC mit anbieten. Siehe unsere Support Seite: Anleitung für das Update des HQPlayer OS.

Die Lizenz ist auf den jeweiligen PC beschränkt. Beim Kauf musst du deshalb den vom HQPlayer ermittelten Fingerprint eintragen. Das ist eine Hardwarekennung, die sich ändert, wenn du Komponenten tauscht oder einen anderen PC verwendest. Inoffiziell ist es wohl Standard, dass 1-2 Änderungen pro Jahr von Jussi Laako akzeptiert werden. Bei der Änderung des Fingerprints schreibst du einfach eine E-Mail an Signalyst und erhältst eine neue Lizenz.

Wenn sich bei dir häufiger etwas ändert, kaufst du zusätzlich den angebotenen USB Dongle. Dieser ersetzt dann den Hardwareabdruck des Computers. Die Lizenzen vom HQPlayer Desktop und HQPlayer Embedded sind untereinander nicht austauschbar. Achte deshalb vor dem Kauf, welches Produkt du verwenden möchtest.

HQPlayer Pro

Diese Version ist für die Tonschaffenden gedacht und ermöglicht die Speicherung von Upsampling Files. Die vorgenannten Versionen ermöglichen nur ein Echtzeit-Upsampling. Deshalb wird der HQPlayer Pro auch von manchen Endverbrauchern verwendet, um die eigene Musiksammlung zu veredeln.

HQPlayer Embedded Konfiguration

Kommen wir nun zur Konfiguration des HQPlayers Embedded. Wer HQPlayer Desktop verwendet, findet die gezeigten Einstellungen in etwas bedienerfreundlicheren Masken (hier nicht gezeigt). Das Gute an HQPlayer Embedded ist dagegen, dass kein Bildschirm angeschlossen werden muss. Gib einfach in einen beliebigen Browser http://hqplayer.local:8088/ ein und der HQPlayer wird automatisch gefunden.

Der Standard-Benutzername für die Weboberfläche ist „hqplayer“ und das Standard-Passwort ist „password“. Du kannst dies unter „Authentication“ ändern.

Für die Schnellleser fange ich mit den zwei wichtigsten Seiten an: die Konfiguration für das Upsampling und die Matrix unter anderem für die Convolution (Raumkorrektur).

Configuration Teil I

Diese Seite ist leider etwas unübersichtlich. Im oberen Teil finden sich die Einstellungen für den allgemeinen Betrieb wie Lautstärke und CPU Auslastung und im unteren Teil spezielle Einstellungen für DSD und PCM. Fangen wir mit dem oberen Teil an.

FeldErläuterung
(1) ConfigurationKlicke oben in der Adressbar auf „Configuration“, damit du zu den Einstellungen kommst.
(2) Output ParameterIn dieser Reihe findest du zahlreiche Output Parameter. Von links nach rechts:
TitleHier kannst du eine individuelle Bezeichnung eingeben. Diese wird angezeigt, wenn du zum Beispiel die Steuerung über den HQPlayer Client durchführst.
BackendHier stehen zwei Möglichkeiten zur Auswahl. ALSA ist der USB Treiber unter Linux. Den wählst du aus, wenn du den DAC mit USB verbindest. Die bessere Variante ist NAA (Network Audio Adapter). Dabei erfolgt über das Netzwerk per (W)LAN die Weitergabe der Daten an den DAC. Siehe: Was sind bessere Alternativen zu UPnP?
Output modeZur Auswahl stehen Auto, PCM (Puls Code Modulation) oder SDM (Sigma Delta Modulation – DSD). Bei Auto wird das jeweilige Quellformat weiterverwendet. Bei PCM wird jede Quelle in PCM umgerechnet und bei SDM wird alles in DSD umgewandelt.
Fixed volumeWenn diese Option nicht aktiviert ist, kann die digitale Lautstärke per Fernbedienung eingestellt werden. Wenn diese Einstellung aktiviert ist, wird die Lautstärke auf den eingegebenen Festwert eingestellt. Grundsätzlich sollst du die Lautstärke nie auf 0 dB einstellen, da sonst ein Clipping möglich ist. Ein guter Ausgangswert liegt zwischen -3 bis -4 dB.
Max/Min volumeHier grenzt du die Bandbreite der Lautstärkeregelung ein.
Startup volumeWenn die Lautstärke nicht fix ist, legst du hier den Startpunkt der Lautstärke fest.
PCM gain compensationAuf der Hilfeseite (siehe Bild unten) findest du die Kompensationseinstellungen für diverse DACs oder Chips. Die Kompensation ist hilfreich, wenn du Vergleiche zwischen PCM und DSD durchführst. Die Lautstärke wird dann entsprechend angeglichen.
Adaptive volumeIn jeder Audiodatei können Informationen darüber gespeichert werden, welche Lautstärkeänderung erforderlich wäre, um jeden Titel oder jedes Album mit einer Standardlautstärke abzuspielen. Siehe ReplayGain 2.0 Spezifikation. Wenn diese Daten vorliegen, erfolgt mit der Aktivierung eine Linearisierung der Lautstärke. Diese Funktion wirkt sich leider nur aus, wenn eigene Musikfiles von der Festplatte abgespielt werden oder das Streaming vom HQPlayer Client aus erfolgt. Bei Roon ist diese Funktion Wirkungslos.
ChannelsDer HQPlayer ermöglicht die Wiedergabe von Mehrkanalsystemen. Beim üblichen Stereo Setup gibst du 2 Channels ein.
FFT filter lengthDiese Einstellung wirkt sich nur beim entsprechenden Filter bei DSD Quellen aus.
Idle timeDiese Einstellung verhindert den Leerlauf der CPU, wenn die Wiedergabe endet. Das ist praktisch für besonders rechenintensive Anwendungen wie DSD Upsampling. So startet die Wiedergabe schneller bei der manuellen Auswahl des nächsten Titels, sofern es innerhalb der festgelegten Sekunden erfolgt.
DSP pipelinesDiese Einstellung betrifft die möglichen Kanäle in der Matrix und soll den genutzten Channels entsprechen. Bei Stereo also zwei Kanäle. Diese Einstellung ist sehr wichtig, weil sie die Menge an Threads und Arbeitsspeicher reduzieren hilft.
(3) OptionsDie Optionen betreffen folgende Einstellungen:
Pre before meterDer HQPlayer Client ermöglicht eine Spektralanalyse und zeigt das Frequenzspektrum der Quelldatei an. Wenn du diese Einstellung aktivierst, erfolgt eine Vorverarbeitung und du kannst zum Beispiel die Wirkung des 20 kHz Filters sehen. Für mich interessanter ist, ob bei HiRes Mogelpackungen in der Quelldatei zu sehen sind. Diese Einstellung lasse ich deaktiviert.
Auto rate familyDiese Einstellung bewirkt, dass ein Upsampling immer mit derselben Basisrate der Quelldatei erfolgt. Also ausgehend von 44.1 kHz erfolgt zum Beispiel ein Upsampling auf 705,6 kHz und bei 48 kHz auf 768 kHz. Diese Einstellung ist für bestimmte Filter (Integer) wichtig, da sie sonst nicht funktionieren.
Quick pauseDamit wird die Pause zwischen einem Umschaltvorgang von einer Quellrate zur nächsten verringert. Wenn es dabei zu hörbaren Störungen kommt, solltest du diese Einstellung nicht verwenden.
Short bufferDamit kannst du den FIFO Puffer (first in first out) des HQPlayers beeinflussen. Ein sehr kurzer Puffer verringert die Latenzen und führt zu einer schnelleren Reaktion. Grundsätzlich sind geringste Latenzen immer eine gute Sache. Es kann aber auch zu Aussetzern führen.
Multicore DSPDiese Einstellung ist für das HQPlayer OS besonders wichtig. Es stehen folgende Optionen zur Verfügung:

– Bei „Auto“ ist die automatische Erkennung und Konfiguration aktiv und die Engine kann eine beliebige Anzahl von Kernen verwenden. Für eine optimale Leistung wird empfohlen, die automatische Erkennung zu verwenden.

– Bei „Off“ wird die Verarbeitung für Fälle optimiert, in denen die Anzahl der Kerne gleich oder geringer ist als die Anzahl der Ausgabekanäle. Zum Beispiel Dual-Core-CPUs, wenn die Ausgabe in Stereo erfolgt.

– Bei „On„wird die Verarbeitung für moderne Multi- Core-CPUs mit einer viel höheren Kernanzahl als Anzahl der Ausgabekanäle optimiert. Da diese Parallelisierung den Verarbeitungs-Overhead erhöht, steigt auch der gesamte CPU-Zeitverbrauch. Wenn bei der Einstellung „Auto“ Leistungsprobleme auftreten, ist es in der Regel sinnvoll, diese Option zu verwenden. Diese Einstellung hat sich ab der HQPlayer Version 5 für den Intel® Core™ i9-13900K Prozessor als die Beste herausgestellt und wird für den fis Audio PC verwendet.
E-CoresHochleistungs-CPUs wie der von uns verwendete Intel® Core™ i9-13900K Prozessor nutzen für rechenintensive Aufgabe die P-Cores (Power Cores) und für leichtere Aufgaben die E-Cores (Efficiency Cores). Bisher war es so, dass die E-Cores im HQPlayer OS nur für Nebentätigkeiten sehr gering in Anspruch genommen wurden. Ich hatte deshalb die E-Cores bis auf zwei alle deaktiviert. Mit der Version 5.4.1 ist es nun möglich die Filterberechnungen auf E-Cores auszulagern. Die erlaubten Werte sind wie folgt:

– „Default„: Standardmäßige (normale) Kernzuweisung.

– „DSP pool„: E-Cores werden für den generischen DSP-Verarbeitungspool zugewiesen.

– „Filter„: E-Cores werden für Ratenumwandlungsfilter zugewiesen. Diese Einstellung wird für den fis Audio PC verwendet.
Blocks per cycleBlock pro Zyklus ist eine Metrik, welche die Leistungsfähigkeit einer CPU (Central Processing Unit) beschreibt, insbesondere in Bezug auf die parallele Verarbeitung von Befehlen. Diese Metrik bezieht sich auf die Anzahl der Befehlsblöcke (auch als Instruktionen oder Operationen bezeichnet), die eine CPU in einem einzigen Verarbeitungszyklus ausführen kann.

Mit der HQPlayer Version 5.4.0 ist eine neue Administrationsmöglichkeit hinzugekommen. Die Anzahl der Blocks wird durch die Größe des CPU Caches und der RAM Geschwindigkeit beeinflusst. Wenn die Einstellung auf „Standard“ gesetzt ist (Default), wird der Wert basierend auf der erkannten Menge an CPU-Cache usw. automatisch konfiguriert. Diese Einstellung kann in der HQPlayer Log-Datei abgefragt werden. Bei einem Intel® Core™ i9-13900K Prozessor wird „Large cache, using large block size“ dokumentiert.Die Verarbeitung von mehr Blöcken auf einmal reduziert den Overhead, insbesondere wenn eine GPU verwendet wird. Während die Verarbeitung von weniger Blöcken auf einmal hilft, die meisten Daten im CPU-Cache zu halten und damit die Latenzen verringert. Für den fis Audio PC funktioniert ein recht kleiner Block von „4“ recht gut. Bei Problemen wählst du am Besten „Auto“.
UPnPDas Produkt HQPlayer Embedded ermöglicht den Betrieb mit UPnP (Universal Plug and Play), was beim HQPlayer Desktop nicht möglich ist. Ich bevorzuge NAA, siehe: Was sind bessere Alternativen zu UPnP? Wenn du UPnP nutzt, kannst du mit der Option „Freewheel“ den Track in einem Rutsch in den Arbeitsspeicher laden.
(4) Log fileDiese Option ist für Problemanalysen sehr nützlich. Aktiviere es und du kannst dann in der Adressleiste mit Klick auf „Log“ die Protokolldatei einsehen.
(5) HelpAuf einigen Seiten wie dieser wird eine Hilfedatei angezeigt und ergänzt somit das Handbuch.
Configuration Teil I

Configuration Teil II

Mit den folgenden Einstellungen legst du fest, wie mit DSD Quellen umgegangen wird und wie ein Upsampling auf PCM oder DSD erfolgen soll. Vergiss nicht alle Einstellungen mit „Apply“ zu bestätigen.

FeldErläuterung
(1) Direct SDMDiese Einstellung betrifft nur DSD Quellen. Wenn es aktiviert ist, dann erfolgt eine Bitperfekte Weitergabe an den DAC. Die weiteren Einstellungen findest du unter „Help“ sehr gut erklärt.
(2) PCM OutputWenn du als Output mode PCM festgelegt hast, dann wirken diese Einstellungen.
1x FilterWenn die Quellrate unter 50 kHz liegt (also zum Beispiel für Basisraten wie 44,1 kHz oder 48 kHz), dann zieht der ausgewählte Filter. Siehe: Audio PC HQPlayer Filtereigenschaften.
Nx FilterFür höhere Quellraten (HiRes z. B. ab 88,2 kHz bzw. ab 96 kHz) wird dieser Filter verwendet. Siehe: Audio PC HQPlayer Filtereigenschaften.
DithersDithers and noise-shapers randomisieren Quantisierungsfehler.
Sample rateHier kannst du die Ausgaberate fixieren auf zum Beispiel 96 kHz, weil der DAC so vielleicht am besten spielt. Oder du stellst es auf Auto, so dass zum Beispiel maximal die im Feld „Rate limit“ angegebene Sampling Rate skaliert wird.
Rate limitDie maximal mögliche Samplingfrequenz für das Upsampling.
(3) DSD OutputWenn du als Output mode DSD festgelegt hast, dann wirken diese Einstellungen.
1x OversamplingWenn die Quellrate unter 50 kHz liegt (also zum Beispiel für Basisraten wie 44,1 kHz oder 48 kHz), dann zieht der ausgewählte Filter. Siehe: Audio PC HQPlayer Filtereigenschaften.
Nx OversamplingFür höhere Quellraten (HiRes z. B. ab 88,2 kHz bzw. ab 96 kHz) wird dieser Filter verwendet. Siehe: Audio PC HQPlayer Filtereigenschaften.
ModulatorDie Wahl des Modulators ist wichtig, macht er doch 50% des Klangs aus (die anderen 50% liegen bei den Filtern). Siehe: Audio PC HQPlayer Modulatoren.
Bit rateDie Feldbezeichnung ist etwas verwirrend, weil es die DSD Rate ist. Bei DSD64 (SACD) wären das 2822,4 kHz (44,1 kHz x 64). Bei „Auto“ geht die Rate bis maximal zum Limit, ansonsten kannst du die Ausgaberate fixieren.
Rate limitDie maximal mögliche DSD Rate für das Upsampling.
(4) ALSA OutputDiese Einstellungen wirken, wenn du unter „Backend“ die Ausgabe mit ALSA vorgegeben hast.
DeviceDas Gerät (z. B. DAC) wird automatisch angezeigt, wenn es erkannt wurde. Bei mehreren Geräten wird eine Liste angezeigt.
Channel offsetDiese Einstellung ist nur für Mehrkanalgeräte wichtig, siehe Erläuterungen unter „Help“.
DAC bitsBei „0“ wird der richtige Wert aus dem DAC gelesen. Bei manchen Schnittstellen wie S/PDIF ist das nicht möglich und du musst den Wert selbst setzen. Manche DACs gaukeln aber auch nur vor 32 Bit zu können, tatsächlich erzielen sie die beste Leistung vielleicht bei 24 Bit oder 16 Bit. Jussi Lako veröffentlicht gelegentlich Messungen und vielleicht ist dein DAC dabei.
Buffer timeDas Festlegen des Werts auf 0 bedeutet Standardpuffergröße. Du kannst die Latenzen mit einer Reduzierung des Puffers verringern. Bei Aussetzern oder Knistern sind 100 ms manchmal hilfreich. Siehe: Wie stellst du die Datenpuffer bei USB und LAN richtig ein?
DoPManche DACs unterstützen nicht die direkte DSD Wiedergabe, dafür aber DoP (DSD over PCM).
48k DSDDie meisten DACs, die DSD unterstützen, unterstützen DSD nur beim Vielfachen der Basis-Abtastrate von 44,1 kHz. Wenn die Quelldatei eine Basisrate von 48 kHz hat ist es immer besser ein ganzzahliges Upsampling durchzuführen. Wenn dein DAC dies unterstützt, aktiviere diese Option. Alle DACs von T+A unterstüzen beispielsweise diese Option.
(5) NAA OutputDiese Einstellungen wirken, wenn du unter „Backend“ die Ausgabe mit Netzwerk-Audioadapter (NAA) vorgegeben hast.
DeviceDas Gerät (z. B. DAC) wird automatisch angezeigt, wenn es erkannt wurde. Bei mehreren Geräten wird eine Liste angezeigt.
DAC bitsBei „0“ wird der richtige Wert aus dem DAC gelesen. Bei manchen Schnittstellen wie S/PDIF ist das nicht möglich und du musst den Wert selbst setzen. Manche DACs gaukeln aber auch nur vor 32 Bit zu können, tatsächlich erzielen sie die beste Leistung vielleicht bei 24 Bit oder 16 Bit. Jussi Lako veröffentlicht gelegentlich Messungen und vielleicht ist dein DAC dabei.
Buffer timeDas Festlegen des Werts auf 0 bedeutet Standardpuffergröße. Du kannst die Latenzen mit einer Reduzierung des Puffers verringern. Siehe: Wie stellst du die Datenpuffer bei USB und LAN richtig ein?
DoPManche DACs unterstützen nicht die direkte DSD Wiedergabe, dafür aber DoP (DSD over PCM).
48k DSDDie meisten DACs, die DSD unterstützen, unterstützen DSD nur beim Vielfachen der Basis-Abtastrate von 44,1 kHz. Wenn die Quelldatei eine Basisrate von 48 kHz hat ist es immer besser ein ganzzahliges Upsampling durchzuführen. Wenn dein DAC dies unterstützt, aktiviere diese Option. Der T+A SD(V) 3100 HV DAC unterstüzt beispielsweise diese Option.
iPv6NAA funktioniert normalerweise zuverlässiger, wenn die IPv6-Unterstützung aktiviert ist. IPv6 unterstützt die automatische Konfiguration für lokale Netzwerke. Wenn du diese Option aktivierst, muss im Router auch IPv6 aktiviert sein.
Configuration Teil II

Matrix

Die Matrix ist mittlerweile ein mächtiges Werkzeug geworden. Sie ermöglicht für Mehrkanalsysteme vielfältige Einstellungen wie Convolution (Faltung für die Raumkorrektur), Equalizerfunktionen, die Anlage von Profilen, DAC-Korrekturen, Crossfeed für Kopfhörer, Loudness, RIAA Entzerrung für Plattenspieler und einiges mehr.

Bitte beachte, dass du Convolution nicht aktiviert hast (siehe Reiter links vor der Matrix). Sonst kommt es zu einer doppelten Verarbeitung. Du kannst dasselbe und noch mehr in der Matrix tun. Und du kannst für unterschiedliche Zwecke mehrere Profile für die Raumkorrektur anlegen. Ich verwende daher für die Convolution für mein 2-Kanalsystem nur noch die Matrix.

Siehe: Wie erstelle ich einen Faltungsfilter für die Raumkorrektur?

FeldErläuterung
(1) MatrixKlicke oben in der Adressbar auf „Matrix“, damit du zu den Einstellungen kommst.
(2) Matrix parametersHier findest du allgemeine Einstellungen wie folgt:
enabledDamit irgendeine Einstellung in der Matrix zur Anwendung kommt, muss du dieses Feld aktivieren. Vergiss nicht unten auf „Apply“ zu klicken, damit die Einstellungen wirksam werden.
EngineDiese Einstellung betrifft die Convolution Engine, also die Raumkorrektur. Overlap-add ist vorbelegt. Overlap-save verbrennt normalerweise etwa 1,5x mehr Rechenleistung. Mathematisch sollten beide Methoden angesichts der Ausgabeauflösung das gleiche Ergebnis liefern. Aber beide Optionen werden angeboten, falls jemand einen Fall findet, in dem er aus irgendeinem Grund anders klingen würde.
Expand HFIm Gegensatz zu Roon können im HQPlayer nur Faltungsfilter mit „einer“ Abtastrate hinterlegt werden. Wenn diese Option aktiviert ist, kann ein Faltungsfilter mit zum Beispiel 44.1 kHz auch für eine Quellrate von 96 kHz verwendet werden. Das Skalieren eines Filters mit höherer Abtastrate auf niedrigere Abtastraten ist etwas einfacher als das Skalieren eines Filters mit niedrigerer Abtastrate für höhere Raten.

Deshalb wird die Verwendung von 384 kHz-Faltungsfiltern im 64-Bit Gleitkommaformat empfohlen, so wie es zum Beispiel mit Acourate – AudioVero möglich ist.
IIR to FIRDies ist eine Spezialeinstellung, wenn zum Beispiel parametrische EQs in FIR (linear phase) umgewandelt werden sollen.
Profile NameHier können verschiedene Profile angelegt werden. Zur Vorgehensweise: konfiguriere erst alle Einstellungen in der Matrix und verprobe sie. Wenn alles wie gewünscht funktioniert, erstellst du einen Profilnamen. Anschließend klickst du auf „Save Profile“. Das machst du auch, wenn du ein bereits hinterlegtes Profil ändern möchtest. Hier erscheint der Name bereits in der Liste.

Um ein angelegtes Profil zu laden, wählst du es aus der Liste aus. Anschließend klickst du auf „Load Profile“.

Wenn das Profil oder die gesetzten Einstellungen beim Neutstart automatisch geladen werden sollen, musst du im letzten Schritt immer die Schaltfläche „Apply“ klicken.
(3) PipelinesDie Matrix ermöglicht die Konfiguration von bis zu 128 Kanälen. Im Bild sind nur zwei Kanäle zu sehen, weil unter „Configuration“ die DSP-Pipelines auf „2“ administriert wurden.

Im Bild ist zu sehen, dass zwei Impulsdateien geladen wurden. Diese Faltungsdateien wurden für die Raum- und Lautsprecherkorrektur mit Acourate – AudioVero erstellt. Um Clipping zu vermeiden, gebe ich immer einen Gain von -3 dB ein.
Wenn du beispielsweise REW anstelle von Acourate verwendest, erstellt es immer Korrekturen basierend auf parametrischem EQ (seinem nativen Betrieb). In einem solchen Fall ist es besser, die IIR-Filtereinstellungen einfach als .txt-Datei zu exportieren und diese in HQPlayer zu importieren. Der Vorteil ist die leichtere Verarbeitung und Unabhängigkeit von der Abtastrate. Weil solche Parameter keine Abtastrate haben. Der Nachteil ist, dass das Timing (die Phase) nicht korrigiert wird.

Du kannst auch direkt „IIR“-Plugin-Werte erfassen. Die Syntax wird unter „Help“ (Klick auf der Maske oben rechts) beschrieben. Oder wenn du riaa eingibst, wird die RIAA Entzerrung verwendet.
(4) Post processDie nachfolgenden Einstellungen kannst du zusätzlich zur Convolution oder allein administrieren.
DAC correctionAls eines der interessantesten Neuerungen wurde die DAC Korrektur veröffentlicht. Es ist nicht ganz klar, was Jussi Laako da programmiert hat. Auf eine Frage antwortete er: „Sowohl der Frequenz- als auch der Phasengang werden korrigiert. Aber du schaust dir nur FFT-Dinge an, also wirst du nicht alles sehen…

Fest steht, dass ein DAC von Jussi Laako nach bestimmten Kriterien durchgemessen wird und daraus die Korrektur erstellt wird. Deshalb muss sich dein DAC in der Liste der unterstützten DACs befinden. Sonst wird eine Korrektur nicht angeboten. Die DAC correction support – Signalyst Liste wird beständig erweitert.

Die Korrekturdateien werden aus der Cloud geladen. Die Rechenlast ist laut den Berichten recht hoch, soll aber klanglich überzeugen.
Bauer cross-feedCrossfeed ist für das Hören mit Kopfhörern. Es mischt einen Teil des linken Kanals in den rechten Kanal und umgekehrt, während Filter und Verzögerungen angewendet werden, die das Hörerlebnis so simulieren, als ob über Lautsprecher gehört wird.
LoudnessLoudness ist eine volumenadaptive Lautstärkeregelung mit einstellbaren Parametern. Aufnahmen sollen so wiedergegeben werden, dass sie bei unterschiedlichen Lautstärken einen ähnlichen Höreindruck ergeben.

Diese Einstellung funktioniert natürlich nur, wenn du die Lautstärke digital mit dem HQPlayer regelst. Wenn du stattdessen einen Vorverstärker verwendest, ist diese Konfiguration nutzlos.
Matrix

Interessant ist auch die Plotfunktion.

FeldErläuterung
(1) MatrixKlicke oben in der Adressbar auf „Matrix“, damit du zu den Einstellungen kommst.
(2) PlotMarkiere die Pipelines, die du plotten möchtest und klicke anschließend auf die Schaltfläche „Plot“.
(3) MagnitudeAm Beispiel der RIAA Entzerrung siehst du, wie der Bass deutlich angehoben und der Hochton gesenkt wird.
(4) PhaseHier wird der Phasenverlauf gezeigt.
Plot

Main (Startseite)

Dies ist die erste Seite, welche mit Eingabe von http://hqplayer.local:8088/ angezeigt wird.

Wenn du weiter runterscrollst, kannst du den Player im Web Browser bedienen. Wobei es sich um einen Notbehelf handelt. Verwende stattdessen lieber zum Beispiel den HQPlayer Client oder Roon.

FeldErläuterung
(1) MainKlicke oben in der Adressbar auf „Main“, damit du zu den Einstellungen kommst.
(2) OutputIn dieser Tabelle werden die Daten für den Output angezeigt. Von links nach rechts:
State: PlayingEs wird gerade etwas abgespielt.
Tracks 1/11Track 1 von insgesamt 11 Tracks wird gerade abgespielt.
Limits: 0 Es bestehen keine Probleme bezüglich Clipping. wenn hier etwas angezeigt wird, reduziere unter „Configuration“ den Gain.
Apod: 0Es bestehen keine Probleme bei der Wiedergabe hinsichtlich Apodisierung. Wenn der Apodisierungszähler anschlägt, verwende einen Apodisierungsfilter. Siehe Audio PC HQPlayer Filtereigenschaften.
Mode: SDM (DSD)Die Wiedergabe erfolgt in DSD statt PCM
Filter: poly-sinc- gauss-xlaEin anspruchsvoller apodisierender extra langer Gaußscher Polyphasen-Sinc-Filter mit extrem hoher Dämpfung. Optimaler Zeit-Frequenzgang. 
Shaper: ASDM7EC-lightEin 1-Bit-Delta-Sigma-Modulator siebter Ordnung mit erweiterter Kompensation, siehe Audio PC HQPlayer Modulatoren.
Output: 22579200/1/2Die Ausgabe erfolgt mit DSD512 (44,1kHz x 512) / 1Bit / 2Kanal
Offload: C Eine nVidia-GPU (Grafikkarte) kann verwendet werden, um die Verarbeitung für Filter und Convolution (Faltung) teilweise von der CPU auf die GPU zu entladen. Hier erfolgt kein Offload.
(3) InputIn dieser Tabelle werden die Daten für den Intput, also von der Quelldatei, angezeigt. Von links nach rechts:
Length: 3.43Anzeige des Tracks in Minuten.
Artist etc.Anzeige der Metadaten falls vorhanden.
Format: 44100/2/16 1 MbpsQuelle mit 44.1kHz / 2 Kanal / 16 Bits, Datenübertragung mit 1.411,2 kbps (44,1 x 2 x 16).
(4) CoverAnzeige des Albums, wenn vorhanden.
(5) PlayerPlayer Tasten
(6) Output parametersLautstärke, Ausgabemodus, Filter, Modulatoren und die Ausgaberate können on the fly geändert werden, zum Beispiel für Vergleichszwecke.
(7) AlbumAlle Titel des Albums werden angezeigt.
Main

Input

Über den Reiter „Input“ kannst du Playlisten laden, Internetradio hören oder eine CD abspielen.

Oben im Beispiel spielte ich Internetradio ab. Im HQPlayer Client wurde eine Bitrate von 128 kbps angezeigt, also noch nicht mal 1/10 einer CD (1.411,2 kbps). Immerhin wird ein Frequenzspektrum von knapp 17 kHz erreicht. Mit dem Upsampling auf DSD512 hörte sich das richtig gut an.

Network/Mounts

Für den fis Audio PC empfehlen wir eine duale PC Konfiguration. So sollen sich die Musikfiles idealerweise auf einem zweiten PC oder auf einem NAS befinden. Siehe: Audio PC & Control PC.

Um eigene Musikfiles einzubinden, welche im Netzwerk (z. B. auf einem NAS) zur Verfügung stehen, musst du den Netzwerkpfad unter NetworkMounts hinterlegen. Am Beispiel eines freigegebenen Windows Ordners könnte die Freigabe wie folgt aussehen:

Share: \\DEINSERVERNAME\ggf. Unterordner
Username: DEIN NAS NAME
Password: DEIN PASSWORD
eventuell Aktivierung SMB/CIFS v1

Library

Um deine Musikbibliothek im HQPlayer zu finden, muss du die enstprechenden Laufwerke einlesen.

Unter Path wählst du „/smb“ aus und klickst auf Scan. Voraussetzung ist das vorherige Mounten des Laufwerks, wie oben beschrieben. Für Musikfiles, die sich intern auf dem Audio PC befinden, kannst du alternativ „/storage“ ausprobieren. Nicht gleich ungeduldig werden, denn je nach Größe kann es dauern bis alles eingelesen wurde. Wenn alles funktioniert hat, kannst du die Musik abspielen. Das kannst du sogar im Browser bedienen. Klick einfach nebem dem Album auf die Play-Taste.

Ich will nicht verschweigen, dass mich die Scan Funktion schon einige Nerven gekostet hat. Sehr viel einfacher ist es dafür Roon zu nutzen. Siehe: Komfortable Bedienung und bester Klang – geht das?

Backup und Restore

Wenn alles eingerichtet ist, empfehle ich dringend die Backup Funktion zu nutzen. Diese speichert sogar Faltungsfiles und die Lizenzdaten mit ab. Wenn du eine neue HQPlayer Version installierst, dann kannst du mit Restore den ursprünglichen Zustand wiederherstellen.

About

Hier kannst du den Fingerprint (Hardwarekennung) auslesen, welche du für den Kauf der Lizenz benötigst. Anschließend bekommst du die Lizenz in .html Form zugesandt, welche du zur Aktivierung hochladen musst.

Unabhängig davon steht dir die unlizenzierte Version in vollem Funktionsumfang für den Test zur Verfügung. Du musst nur alle 30 Minuten den HQPlayer neu starten.

Log, Shutdown, Reboot und Suspend

Mit Klick auf den Reiter (1) Log kannst du die Log-Datei auslesen (sofern unter „Configuration“ aktiviert). Unten im Bild wird im Log zum Beispiel die IP-Adresse des T+A DACs angezeigt.

Oder du kannst den Rechner (2) runterfahren oder den HQPlayer (3) neu booten oder in den (4) Ruhezustand versetzen.

Zusammenfassung

In den Grundlagen haben wir die Vorteile des externen Upsamplings erörtert. Dabei wird der Klang durch die Filterqualitäten und Modulatoren bestimmt.

Signalyst bietet verschiedene Produkte für das hochwertige Upsampling an:

  • HQPlayer Desktop,
  • HQPlayer Embedded und
  • HQPlayer Pro

Dabei erfreut sich der HQPlayer Embedded auch bei den Endkunden zunehmender Beliebtheit, weil das kostenlose HQPlayer OS extrem schlank ist und mit niedrigsten Latenzen läuft.

Die Einstellungen sind leider recht umfangreich. Beim Kauf des fis Audio PCs machen wir das natürlich für dich. Aber auch dann können eigene Experimente den Klang steigern, wenn du weißt wo du die Einstellungen findest und was sie bewirken.

Die Matrix finde ich besonders interessant, weil über die Profile im Handumdrehen zum Beispiel andere Faltungsfilter für die Raum- und Lautsprecherkorrektur geladen werden können. Auch die neue DAC Korrektur sorgt bei vielen schon für Begeisterung.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am Ein Kommentar

Intel K-CPU Stromzufuhr sinnvoll begrenzen

Einleitung

Das war ein Aufreger: Intel hat die Hersteller von Motherboards mehr oder weniger dazu gezwungen BIOS Updates wegen instabiler K-CPUs zu veröffentlichen.

Ich kann gleich Entwarnung geben: die fis Audio PCs sind davon nicht betroffen, weil wir das BIOS immer mit Strom- und Wärmebegrenzung einrichten. Doch worum geht es? Sehen wir uns zuerst die Grundlagen an und erörtern dann das Problem.

Grundlagen

Strommanagement im BIOS, bzw. UEFI

BIOS & UEFI

BIOS (Basic Input/Output System) und UEFI (Unified Extensible Firmware Interface) sind beides Firmware-Typen, die beim Starten eines Computers grundlegende Hardware-Initialisierungen durchführen und das Betriebssystem laden. So sind zum Beispiel zahlreiche Einstellungen möglich, die direkt oder indirekt Einfluss auf die Stromversorgung haben.

BIOS ist ein älteres System, das ursprünglich in den späten 1970er Jahren entwickelt wurde. BIOS hat eine textbasierte, nicht-grafische Benutzeroberfläche und ist daher nicht sehr benutzerfreundlich, dafür aber schnell.

UEFI ist moderner und wurde in den frühen 2000er Jahren als Nachfolger von BIOS entwickelt. UEFI kann grafische Benutzeroberflächen und Mausunterstützung bieten. Es ermöglicht eine benutzerfreundlichere und intuitivere Bedienung, ist aber auf billigen Motherboards mitunter sehr träge.

Die im fis Audio PC verwendeten Motherboards sind sehr hochwertig und verwenden alle UEFI. Ich erlaube mir trotzdem das Bezeichnung BIOS als Synonym für UEFI zu verwenden, weil es umgangssprachlich verbreiterter ist.

PL1 (Power Limit 1) und PL2 (Power Limit 2)

PL1 und PL2 sind Leistungsbegrenzungsparameter (Power Limits), die in der Architektur von Intel-Prozessoren verwendet werden, um die Leistung und den Energieverbrauch der CPUs zu steuern. Dabei passt der Prozessor seine Taktraten und Spannungen an, um sicherzustellen, dass der durchschnittliche Energieverbrauch den PL1/PL2-Wert nicht überschreitet.

PL1 ist die langfristige Leistungsgrenze, die den durchschnittlichen Energieverbrauch eines Prozessors über einen längeren Zeitraum definiert.

PL2 ist die kurzfristige Leistungsgrenze, die den maximalen Energieverbrauch eines Prozessors über kürzere Zeiträume definiert. PL2 erlaubt dem Prozessor, für kurze Zeiträume über den PL1-Wert hinauszugehen, um höhere Leistungsspitzen zu bewältigen, was zu einer temporären Leistungssteigerung führt.

PL1 und PL2 Spezifikationen (Veränderungen)

Normalerweise soll PL1 als langfristige Einstellung einen niedrigeren Wert haben als PL2. Das war aber lange Zeit nicht so. Intel spezifizierte die PL1 und PL2-Werte bei einem Intel® Core™ i9-13900K Prozessor mit 253W gleich.

Das wurde zurückgenommen. Aktuell ist in den Intel-Profilen „Baseline“ und „Performance“ der PL1 Wert niedriger als der PL2 Wert:

Intel Core i9-13900K (14900K)BaselinePerformanceExtreme„Insane“
Basisleistung des Prozessors125125125125
PL11251252534096
PL21882532534096
Iccmax249307400512
Umfangreicher Workstation- und KI-Test mit Intels i9-13900K – Die Leistungs-Profile Baseline, Performance, Extreme und Insane von vernünftig bis sinnlos in der Praxis | igor´sLAB (igorslab.de)

Vorteile von Intel K-CPUs

Intel-CPUs mit dem Zusatz „K“ haben spezifische Eigenschaften, die sie von anderen Intel-CPUs unterscheiden. Ausfolgenden Gründen verwenden wir für den fis Audio PC einen Intel® Core™ i9-13900K Prozessor:

Taktfrequenz einstellbar

Der größte Unterschied ist, dass CPUs mit einem „K“-Suffix einen freigeschalteten Multiplikator haben. Das bedeutet, dass sie für das Übertakten ausgelegt sind. Übertakten ist der Prozess, bei dem die Taktfrequenz des Prozessors erhöht wird, um eine höhere Leistung zu erzielen. Umgekehrt geht es aber auch, so dass die Taktfrequenz herabgesetzt werden kann.

Verlötet statt Wärmepaste

Ein weiterer Unterschied liegt im Verlöten des Heatspreaders (IHS, Integrated Heat Spreader) mit dem Prozessor-Die. Dies sorgt für eine effizientere Wärmeableitung im Vergleich zu herkömmlichen Wärmeleitmaterialien wie Thermalpaste. Die bessere Wärmeübertragung hilft, die CPU stabiler zu halten, insbesondere bei hoher Belastung oder Übertaktung.

Problemstellung

Instabile Intel K-CPUs

Berichte von Nutzern

Aus der Gaming-Szene gab es andauernde Berichte über Stabilitätsprobleme mit K-CPUs der 13. und 14. Gen Core. Das perfide an der Sache war, dass sich dieses Verhalten erst mit steigender Nutzungsdauer einstellte. Die Folge waren Computer-Abstürze und eine schnellere Alterung der CPUs. Siehe unter anderem BSOD mit Intel Core: Berichte um rasant „alternde“ K-CPUs reißen nicht ab – ComputerBase.

Probleme beim Übertakten

Mittlerweile gibt es ein Statement von Intel:

Intel® hat festgestellt, dass dieses Problem möglicherweise mit Betriebsbedingungen zusammenhängt, die außerhalb der Spezifikation liegen und zu anhaltend hohen Spannungen und Frequenzen während Zeiten erhöhter Hitze führen.
Die Analyse der betroffenen Prozessoren zeigt, dass es bei einigen Teilen zu Verschiebungen der Mindestbetriebsspannungen kommt, die möglicherweise mit dem Betrieb außerhalb der von Intel® spezifizierten Betriebsbedingungen zusammenhängen.

Obwohl die Grundursache noch nicht identifiziert werden konnte, hat Intel® festgestellt, dass die Mehrzahl der Berichte über dieses Problem von Anwendern mit entsperrten/übertaktungsfähigen Motherboards stammen.

Tatsächlich gibt es bei den Motherboards irrwitzige Einstellungen. Zum Beispiel wurde bei msi automatisch das Profil „Water Cooler“ mit einer PL1 von 4.096W gesetzt, wenn der CPU Multiplikator erhöht wurde.

Intel verlangt nun von PC- und Motherboard-Herstellern, dass sie Anwendern in Zukunft ein „Default BIOS“ zur Verfügung stellen, das den Betrieb nach Intels Vorgaben ermöglicht. Quelle: Instabile K-CPUs: Intel sieht die Schuld allein bei den Mainboard-Herstellern – ComputerBase

Keine Probleme beim fis Audio PC

Ja auch der fis Audio PC wird übertaktet. Aber in einer intelligenten und gemäßigten Form. Der erste Schritt ist, den Multiplikator der P-Cores (P-Core-Ratio) je nach Einsatzzweck und Netzteil auf 40 bis maximal 44 einzustellen. Das entspricht einer Taktfrequenz von 4 GHz oder 4.4 GHz. Gleichzeitig stellt es die Obergrenze dar. Zum Vergleich: der Intel® Core™ i9-13900K Prozessor ermöglich eine Übertaktung bis 5,8 GHz. Manche gehen noch darüber hinaus.

Wer P-Core-Ratio stattdessen in der Standard-Einstellung „Auto“ belässt, erlebt beim ersten Programmstart sein blaues Wunder. Bei einem linearen Netzteil wird bei einer Taktfrequenz von > 5GHz in der Regel die Abschaltung ausgelöst.

Ich wurde schon oft gefragt, warum im fis Audio PC nicht eine leistungsschwächere CPU verbaut wird. Auch um das elektrische Rauschen zu vermindern. Nach meiner Erfahrung ist genau das Gegenteil der Fall. Eine leistungsstarke CPU arbeitet ruhiger und mit weniger Rauschen als eine schwache CPU, die immer bis zum Anschlag hochgefahren wird. Hinzu kommt noch die Silikon Lotterie, weshalb im fis Audio PC immer die Flaggschiff CPUs verbaut werden. Bei Interesse zum Nachlesen: Was gibt es Neues auf dem CPU Markt?

Nun kommt das Entscheidende: Die maximale Stromzufuhr muss begrenzt werden! Dabei stellen wir das Long Duration Power Limit, welches Intels PL1 entspricht, auf maximal 95W ein (je nach Einsatzzweck). Und das Short Duration Power Limit, welches Intels PL2 entspricht, auf maximal 125W. Damit lagen diese Werte für alle fis Audio PCs schon immer weit unterhalb der Intel Spezifikationen.

Zusätzlich wird die CPU Temperatur auf 95°C begrenzt. So hat man noch Reserven, bevor der Intel Core bei 100°C selbst anfängt die Leistung zu drosseln.

Alle unsere fis Audio PC Kunden erhalten ein Protokoll mit den Einstellungen und den durchlaufenen Tests für den stabilen und klangstarken Betrieb. Ein BIOS Update ist nicht erforderlich! Denn es gilt: „Never change a running system“!

Zusammenfassung

Dem Strommanagement im BIOS, bzw. UEFI kommt eine große Bedeutung zu. Die Motherboard Hersteller haben es mit ihren standardmäßig aktivierten PL1 und PL2 Limits übertrieben. Andererseits ist es kaum vorstellbar, dass Intel von dieser weit verbreiteten Praxis bisher nichts wusste.

Die Intel K-CPUs haben die Vorteile, dass die Taktfrequenz einstellbar und der IHS verlötet ist. Intel hat nun selbst die PL1 und PL2 Spezifikationen wieder in das Sinnvolle verändert. Nämlich die PL1 für den dauerhaften Betrieb mit niedrigeren Werten, als PL2. PL2 war schon immer nur für kurzfristige Leistungsspitzen gedacht.

Durch die hohen PL1- und PL2-Werte kam es zu instabilen Zuständen. Keine Probleme gibt es beim fis Audio PC, weil hier schon immer Strom- und Wärmebegrenzungen im BIOS eingestellt wurden. Das ermöglicht dir den störungsfreien und klangstarken Musikgenuss.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Stromarchitektur von Motherboards

Einleitung

In audiophilen Kreisen hat sich herumgesprochen, dass die Stromversorgung für einen guten Klang elementar ist. Weniger bekannt ist, dass dies sogar für die digitale Ebene gilt.

In den Grundlagen schauen wir uns an, wie digitale Daten verarbeitet und übertragen werden und welche klangliche Auswirkungen Ripple Noise haben kann. Die Strom-Architektur von Motherboards spielt bei einem Audio PC eine große Rolle und deshalb schauen wir uns unterschiedliche Designs genauer an.

Grundlagen

Digitale Datenverarbeitung und Übertragung

Im Chip befinden sich die Transistoren, welche Binärcodes verarbeiten. Das sind zwei gegensätzliche Zustände, welchen in einer 0 und 1 dargestellt werden können.  Jeder dieser Transistoren wird dabei als eine Art elektronischer Schalter eingesetzt, um einen Teilstrom ein- oder auszuschalten.

Die Binärcodes müssen über die Leiterbahnen der Platine, auf dem der Chip sitzt, transportiert werden. Und von der Platine gehen die Daten über Schnittstellen rein oder raus. Zum Beispiel per USB oder Ethernet zu deinem DAC.

Bei Ethernet hast du vielleicht schon Bilder mit dem sogenannten Eye pattern oder Augenmusterdiagramm gesehen. Diese Messungen lassen Rückschlüsse auf die Qualität des Signals zu. Dabei wird mit einem Oszilloskop die Überlagerung aufeinanderfolgender Wellenformen zu einem zusammengesetzten Bild erstellt. Im Bild unten wird auf der Ordinate (y-Achse vertikal) der Spannungszustand definiert, ab der eine binäre 0 oder 1 anliegt. Auf der Abszisse (x-Achse horizontal) ist der Zeitverlauf angegeben. Über die Spannungszustände und dem Zeitverlauf ergibt sich so zum Beispiel eine Bitsequenz von 011 (Gelb).

Wenn sich über die verschiedenen Bitsequenzen auf dem Oszilloskop in der Mitte ein großes Auge erkennen lässt, ist die Signalqualität in Ordnung. Störungen in den Spannungsverläufen, zum Beispiel Verschiebungen durch Jitter oder eine zu geringe Steilheit in den Flanken können zu Fehlinterpretationen der Bitsequenzen führen. Durch die Prüfsummen wird das fehlerhafte Datenpaket zwar erkannt, aber wenn das zu oft passiert, stresst das die CPU und es gehen Datenpakete verloren.

Wir halten fest, dass die binären Daten in einer analogen Technik übertragen werden. Saubere Spannungszustände im Stromfluss sind entscheidend für die binäre 0 oder 1.

Ripple Noise (Welligkeitsrauschen)

Die Welligkeiten sind AC-Schwankungen (Wechselstrom periodisch) und das Rauschen (zufällig), die in den DC-Schienen (Gleichstrom) eines Netzteils zu finden sind. Die Welligkeit verringert die Lebensdauer von Kondensatoren erheblich, da sie ihre Temperatur erhöht. Auch spielt die Welligkeit eine wichtige Rolle bei der Stabilität des Gesamtsystems, insbesondere wenn die CPU übertaktet wird.

Am schlimmsten sind die hörbaren Auswirkungen der Welligkeit, weil die Brummfrequenz und ihre Harmonischen innerhalb des Audiobandes liegen! Die Welligkeitsgrenzen betragen laut ATX-Spezifikation 120 mV für die 12V-Schienen und 50 mV für den Rest (5V und 3,3V). Zuviel für die Audio Wiedergabe. Das lineare Netzteil OPTIMO S ATX – JCAT hat stattdessen ein Ripple Noise von weniger als 0,025 mV.

Mögliche klangliche Auswirkungen

In der Theorie kommen alle Daten bitperfekt an, weil es Prüfsummen gibt und bei Fehlern die Datenpakete neu angefordert werden. Außerdem sorgen Puffer in den Schnittstellen für eine asynchrone Datenübertragung. Daher behaupten viele, dass Digital gegen Klangveränderungen immun ist.

In der Praxis können Störungen in der Stromversorgung jedoch für hohen Jitter sorgen und die Wellen driften auseinander. Oder die notwendige Flankensteilheit ist nicht mehr gegeben. Kann der Controller die Spannungszustände nicht mehr zuverlässig zwischen einer 0 und einer 1 unterscheiden, erkennen Prüfsummenprotokolle den Fehler. Reicht bei Fehlern die Zeit für eine Neuanforderung der Daten jedoch nicht mehr aus, sind hörbare Kratzer wie von einer Schallplatte, sowie Drop Outs die Folge, weil Datenpakete verloren gegangen sind.

Ein weiterer Punkt ist das elektrische Rauschen (thermisches Rauschen), welches zunimmt, wenn die CPU gestresst wird. Es können zusätzlich Interrupts entstehen, welche andere Prozesse stoppen. Dies führt zu hohen Latenzen, die sich auf eine Musikwiedergabe sehr störend auswirken können.

Ein oft nicht bedachter Nebeneffekt ist die Weitergabe des Ripple Noise über die Masseleitung an angeschlossene Geräte. Das kann über die (ungefilterte) Stromversorgung geschehen, aber auch über kupfergebundene Datenkabel wie LAN, USB, S/P-DIF, etc. Wenn das Welligkeitsrauschen in den DAC oder/und in den Verstärker gelangt, bewegen wir uns im hörbaren analogen Bereich.

Motherboard

Stromphasendesign

Die CPU benötigt mit Abstand den meisten Strom, GPUs (Grafikkarten) ausgenommen. Deshalb kommt es gerade hier auf das Stromdesign an.

Phasen-Doppler-Design

Die Strom Architektur wird beim Gaming Mainboard ROG Maximus XIII Extreme | ASUS sehr gut erklärt. Die PWM-Controller steuern den Stromkreis, während die Leistungsstufen aus elektrischer und thermischer Sicht die Schwerstarbeit übernehmen. Im ROG Maximus XII Extreme kommen 20 Leistungsstufen mit 100A zum Einsatz. Festkörperpolymerkondensatoren fungieren als Ein- und Ausgangsfilter.

Im Bild unten ist die Arbeitsweise von Phasen-Dopplern zu sehen. Grundsätzlich werden je zwei Leistungsstufen zusammengeschaltet, welches einen höheren Spitzenstrom pro Phase ermöglicht. Der Nachteil ist, dass Phasen-Doppler eine Ausbreitungsverzögerung (hohe Latenzen) bewirken, die das transiente Verhalten behindern.

Im konventionellen Phasen-Doppler-Design werden die Leistungsstufen sequentiell, also nacheinander geschaltet. ASUS macht es besser, indem die Leistungsstufen parallelgeschaltet werden.

Direktes Phasen-Design

Das MSI MEG Z690 UNIFY-X Gaming Motherboard ATX geht hier einen anderen Weg. Dabei werden die insgesamt 19+2 digitalen Leistungsphasen mit je 105A direkt vom PWM-Controller angesteuert. Dadurch werden grundsätzlich geringere Latenzen erreicht.

Disclaimer: Ob das in der Realität wirklich so ist, hängt natürlich auch von anderen Kriterien ab. Mir sind bei den hier genannten Motherboards keine Messungen bekannt, welche die grundsätzlichen Erwägungen bestätigen. Insofern gibt es keine Kaufempfehlungen von mir!

Leiterbahnen und Kontakte

Wo Strom fließt, sollen die Wege möglichst kurz sein, was für ein mehrlagiges Platinen Layout spricht. Außerdem sollen die Leiterbahnen nicht zu knapp dimensioniert sein, um den Stromdurchfluss nicht zu bremsen.

Die Kontakte sollen von einer soliden Qualität sein, um Wackelkontakte und Kurzschlüsse zu vermeiden.

Im bereits erwähnten MSI MEG Z690 UNIFY-X Gaming Motherboard ATX werden diese Bedingungen sehr gut erfüllt. Die Leiterplatte besteht aus 8 Schichten PCB auf Serverniveau. Die Leitbahnen sind aus 2oz Kupfer. Zwei PCI-Sockets werden mit Stahl für einen besseren Halt verstärkt. Die Molex Steckkontakte sind sehr stabil und bieten Steckern einen sehr guten Halt. Die SMT-Technik wurde verbessert, um schadhafte Lötstellen zu vermeiden.

Aus diesen Gründen haben wir uns für hochwertige MSI-Motherboards und aufgrund deutlich reduziertem Ripple Noise für lineare Netzteile entschieden.

Zusammenfassung

Die digitale Datenübertragung findet analog im Stromfluss über verschiedene Spannungszustände statt. Deshalb ist ein geringer Ripple Noise (Welligkeitsrauschen) auf dem Motherboard so wichtig, damit die digitalen Daten zuverlässig zwischen 0 und 1 unterschieden werden können.

Klangliche Einbußen entstehen bei verlorenen Datenpaketen, Jitter, thermischen Rauschen und Interrupts. Ein Nebeneffekt ist, dass Ripple Noise in den analogen Bereich der angeschlossenen Geräte wandern kann.

Moderne Motherboards sollen über ein effizientes Stromphasendesign verfügen. Für geringe Latenzen eignet sich ein direktes Phasen-Design grundsätzlich besser als ein Phasen-Doppler-Design. Ein mehrlagiges Platinenlayout mit stromfesten Leiterbahnen und stabilen Kontakten ermöglicht einen störungsfreien Stromdurchfluss.

Achte beim Kauf eines Motherboards auf die oben genannten Kriterien.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Was bringen die Softwareupdates von Roon & HQPlayer?

Einleitung

Roons wichtigstes Update in der Architektur ist schon etwas länger her. Es erlaubt Einblicke, wie die Leistungsfähigkeit von Musikplayern verbessert werden kann.

Auch beim HQPlayer hat sich in der Architektur eine bedeutsame Änderung ergeben. Nämlich in der Kernzuordnung beim Upsampling.

Für ein besseres Verständnis gehe ich vorher in den Grundlagen auf die grundsätzliche Verarbeitung in Computern und auf die Leistungsanforderungen bei Filtern und Modulatoren ein.

Grundlagen

Computer Processing

Interrupts und andere Probleme

Ein Computer ist ständig damit beschäftigt, Daten zu lesen, zu berechnen und zu schreiben.

Bei der Wiedergabe von Musik müssen die Musikdateien von einer SSD gelesen oder vom Netzwerk gestreamt werden. Die Musik muss verwaltet werden, z.B. sortiert nach Musikgenre, Interpret und ggf. mit Informationen über die Musiker. Es muss auch möglich sein, die Musik zu steuern, einschließlich des Auswählens, Abspielens, Stoppens und ggf. Einstellens der Lautstärke.

Dies führt unweigerlich zu häufigen Unterbrechungen, die dem Audiobetrieb sehr abträglich sind. Dabei kann es sich um störende Latenzen handeln. Ein Interrupt tritt bei einem externen Ereignis auf, dass die normale Ausführung eines Programms unterbricht. Dieses Ereignis kann z.B. das Drücken einer Taste auf der Tastatur, das Eintreffen einer Netzwerknachricht oder der Ablauf eines Timers sein.

Sobald ein Interrupt ausgelöst wird, stoppt der Prozessor seine aktuelle Aufgabe und springt zu einem speziellen Interrupt-Handler, der das Ereignis behandelt. Der Task-Scheduler ordnet dann den Prozessen die CPU-Kerne neu zu und priorisiert die Aufgaben.

Leider neigen Betriebssysteme dazu, alle möglichen Interrupts zuzulassen. Die Musikwiedergabe kann beeinträchtigt werden, weil z.B. die internetfähige Waschmaschine meldet, dass die Wäsche fertig ist. Schuld daran ist Broadcast. In einem Computernetzwerk handelt es sich dabei um eine Nachricht, bei der Datenpakete von einem Punkt an alle Teilnehmer eines Kommunikationsnetzes übertragen werden.

Deshalb ist es allgemein besser, die Musikwiedergabe auf zwei Computer aufzutrennen. Ein Computer, nennen wir ihn Control PC, speichert und streamt die Musik und verwaltet und steuert sie. Das kann auch ein leistungsfähiges NAS (Network Attached Storage) sein, welches im Keller steht. Wichtig ist an dieser Stelle nach meiner Erfahrung eine galvanische Trennung z. B. mit Glasfaser und ein Reclocking mit einer hochwertigen OCXO-Clock.

Der andere Computer, nennen wir ihn Audio PC, hat nur eine Aufgabe: die Musikdateien bestmöglich für den DAC aufzubereiten und die Daten an ihn störungsfrei zu senden. Deshalb soll der Audio PC nur Prozesse ausführen, die im direkten Zusammenhang mit der Musikwiedergabe stehen. Hier soll möglichst ein sehr schlankes Betriebssystem mit geringsten Latenzen eingesetzt werden. So wie wir es mit dem HQPlayer OS anbieten.

Upsampling

Die Grundidee des Upsamplings außerhalb des DACs ist, dass Computer eine viel geeignetere Umgebung (Auflösung, Befehlssatz-Effizienz, Verarbeitungsgeschwindigkeit) für mathematische Operationen bieten als die begrenzte Rechenkapazität eines DAC.

Die meisten DACs haben einen Delta-Sigma-Chip wie ESS SABRE oder AKM, welche sowieso jedes eingehende Signal in DSD umrechnen. Unten im Bild wird im ersten Prozesspfad gezeigt, wie im DAC eine Musikdatei im Format PCM mit zwei Oversamplingstufen in den Megahertzbereich gebracht wird. Aus 44,1 kHz werden im Beispiel 11.289,6 kHz, bzw. 11,2896 MHz. Das entspricht DSD256! Einfache Anti-Aliasing-Filter vermeiden dabei die Spiegelfrequenzen, welche den hörbaren Bereich demodulieren können.

Das nun vorliegende Musikmaterial in Megahertz wird durch einen einfach gehaltenen Modulator in den sogenannten Bitstream überführt, welcher letztendlich in ein analoges Signal gewandelt wird.

Wird das Hochrechnen in den Megahertzbereich von einem leistungsfähigen Computer und einer Software wie z. B. den HQPlayer übernommen, können Gleitkommaberechnungen statt Festkomma und viel bessere Filter verwendet werden (oben im Bild mittlerer Prozesspfad).

Im unteren Prozesspfad ist der Königsweg zu sehen: der einfache DAC Modulator (oft 3. Ordnung) wird durch einen leistungsfähigen Modulator 7. Ordnung ersetzt. Der DAC macht dann tatsächlich nur noch die Umwandlung von Digital (Bitstream) in Analog. Diese deutliche Arbeitsentlastung führt auch zu weniger elektronischem Rauschen im DAC.

Zur Vertiefung des Themas empfehle ich diesen Newsletter: Wie arbeitet ein DAC und was kann Upsampling bewirken?

Architekturänderungen

Roon Update

Im November 2023 wurde die neue Softwarearchitektur veröffentlicht:

Diese neue Architektur spiegelt unsere empfohlene Roon-Konfiguration wider – Roon Server und Roon separat laufen zu lassen In Zukunft werden wir Roon Server nicht mehr als eigenständigen Installer für Windows und Mac anbieten. Auf diesen Plattformen wird es einen einzigen Roon-Installer geben, der die Roon-Anwendung (zum Auswählen von Musik und Konfigurieren von Roon) und Roon Server für Benutzer enthält, die ihren Core unter Windows oder macOS ausführen.

Roon 2.0.25 is live! – Roon Software Discussion / Software Release Notes – Roon Labs Community

Einordnung des Updates

Eigentlich ist es ein Zusammenschluss des ursprünglichen Roon Desktops mit dem Roon Server. Beide enthielten den sogenannten Roon Core, also den Rechenknecht. Nur das der Roon Server Headless war und einer Fernsteuerung mit der App Roon Control bedurfte. Der Roon Server in Verbindung mit Roon Control war auch die von Roon empfohlene Konfiguration, um die Hintergrundaktivitäten von der Steuerung zu trennen.

Etwas lästig und verwirrend sind die Namensänderungen der unterschiedlichen Bestandteile. Eingeführt wurde Roon nämlich mit den Komponenten:

  • Roon Core: Der Media Server mit DSP.
  • Roon Control App: Das User Interface zur Steuerung.
  • Roon Output: Der Media Renderer, der die Audiodateien (z. B. FLAC) vom Core empfängt und mit einem geeigneten digitalen Datenstrom (z. B. WAV) an den DAC weiterleitet.

Der Roon Core heißt heute Roon Server, das DSP heißt MUSE. Roon Control App heißt Roon Remote App und Roon Output heißt Audio Devices. Da gefielen mir die alten Bezeichnungen besser.

Es gibt User, die auch am PC Roon bedienen wollen und deshalb Roon Desktop installierten. Der Nachteil: wurde Roon Desktop beendet, war auch mit dem Roon Core Ende Gelände. Das kann mit „einer“ Installationsroutine, welche automatisch „zwei“ Applikationen installiert, nicht mehr passieren.

Der Roon Server wird (auf Wunsch) mit dem Hochfahren des PCs automatisch gestartet und steht sofort für Apps auf dem Smartphone oder Tablet zur Verfügung. Wer auf dem PC Roon steuern möchte, ruft manuell die zweite Applikation mit „Open Roon“ auf. Im Bild unten ist der neue Ordner „Roon“ zu sehen. Es sind 710 MB hinzugekommen.

Probleme bei Taiko Audio

Taiko Audio – High End Music Servers hatte dabei ein hausgemachtes Problem mit dem Roon Update. Hausgemacht deshalb, weil sie den Roon Start mit einem eigenen Dienst „TaikoRoon“ ausführten und hier passten die Variablen nicht mehr zur neuen Version.

Interessanter ist, dass die Taiko Extreme Hörer mit Roon eine Klangverschlechterung feststellten. Die Ursache lag vermutlich an der übermäßigen Menge an Trace- und Debug-Logging-Einträgen, welche Festplattenaktivitäten auslösen. Taiko Audio geht davon aus, dass diese zusätzliche Debug-Protokollierung und -Ablaufverfolgung von den Roon-Entwicklern aktiviert wurde, um Probleme diagnostizieren zu können. Taiko Audio hat sich entschieden einen eigenen Player zu entwickeln, der allerdings nur für eigene Musik Server angeboten wird: XDMS NSM User Feedback – Taiko Audio.

HQPlayer Update

Dieses Update beinhaltete eine wesentliche Neuerung in der Auslastung von CPU Kernen:

6. Februar 2024HQPlayer 5 Embedded 5.4.1 veröffentlicht.
Unterstützung für die Verwendung von E-Cores als Offload Prozessoren. Kleine Korrekturen Verbesserungen.
Signalyst

Einordnung des Updates

Wir verwenden für den fis Audio PC die Flaggship-CPU Intel® Core™ i9-13900K Prozessor. Das ist eine Hybrid CPU mit P-Cores (Performance) und E-Cores (Efficient).

Neben den Performance-Kernen (P-Cores) kommen Effiziente Prozessorkerne (E-Cores) zum Einsatz. Die 24 Kerne verteilen sich auf 8 P-Cores und 16 E-Cores. Mit Hyperthreading der P-Cores, also der Verteilung der Last auf zwei virtuelle Cores, sind insgesamt 32 Threads möglich.

Vor dem Update war es so, dass der HQPlayer die E-Cores nicht nutzte. Deshalb schalteten wir die E-Cores bis auf zwei Kerne ab. Nun können mehr E-Cores für die Filterberechnung herangezogenwerden. Die Anzahl der E-Cores hängt von der Stromversorgung ab. Das ist eine deutliche Verbesserung der CPU-Auslastung.

HQPlayer mit Filter poly-sinc- gauss-halfband

Unten im Bild wird ein 96kHz Titel zu DSD512x48 hochgerechnet. Der Filter poly-sinc- gauss-halfband hat folgende Eigenschaften:

Linearphasiger Halbband-Gauß- Filter. Leichtes Leck im Nyquist- Bereich, aber extrem hohe Dämpfung. Nur geeignet für Quellenmaterial von höchster Qualitätjede Ratenicht Apodisierendjedes GenreTransients, Timbre, Space

Per Definition leiten Halbbandfilter die Originaldaten unverändert durch und fügen nur dazwischen neue Samples hinzu. Dies bedeutet auch, dass es keine Fehler in den Quelldaten beheben kann und somit auch alle Fehler originalgetreu reproduziert. Deshalb ist es für 95% der RedBook-Inhalte (44,1kHz/16Bit) nicht geeignet!

Die P-Cores für die Modulatoren (Nr. 1 und 3) müssen die größte Last stemmen. Die Rechenlast der E-Cores (Nr. 17 bis 32) für die Filter ist sehr gering und verteilt sich sehr gleichmäßig auf alle Kerne.

HQPlayer mit Filter sinc-MG

Der Filter sinc-MG hat folgende Eigenschaften:

Gaußscher Konstantzeitfilter mit einer Million Taps bei 16- facher PCM-Ausgangsrate. Extrem hohe Dämpfung.
(65536 Umrechnungsverhältnis)
Ratio Integernicht ApodisierendClassical, Jazz, BluesTransients, Timbre, Space

Hier werden aufgrund der 1 Million Taps pro Kanal (Stereo) zwei E-Cores deutlich höher belastet als die anderen.

HQPlayer mit Filter poly-sinc- gauss-xl

Der Filter poly-sinc- gauss-xl ist sehr anspruchsvoll:

Extra langer Gaußscher Polyphasen-Sinc-Filter mit extrem hoher Dämpfung. Optimaler Zeit-Frequenzgang. Bei SDM-Ausgängen erfolgt die Verarbeitung in zwei Stufen mit 16-facher Zwischenrate.Jede Rate nicht ApodisierendClassical, Jazz, BluesTransients, Timbre, Space

Hier werden die E-Cores ordentlich in die Mangel genommen. Die Lastverteilung ist dafür sehr gleichmäßig.

Zu den Filtern findest du hier weitere Informationen: Audio PC HQPlayer Filtereigenschaften.

Zusammenfassung

Im Computer Processing sorgen Interrupts für Unterbrechungen in der Verarbeitung und führen eventuell zu hohen Latenzen. Der Klang verschlechtert sich. Deshalb ist es eine gute Idee die Aufgaben in einen Control PC (z. B. Roon) und einen Audio PC (z. B. HQPlayer) aufzuteilen. Siehe auch unseren Newsletter: Komfortable Bedienung und bester Klang – geht das?

Das externe Upsampling verbessert zum Teil ganz erheblich den Klang. Das liegt an der deutlich besseren Rechenleistung von Computern, die hochwertige Algorithmen mit Gleitkommaberechnungen ausführen können. Der DAC hat weniger Rauschen, weil er in seiner Arbeit entlastet wird.

Das Roon Update trennt den Roon Core konsequent von Roon Control, also der Steuerung. Allerdings war das mit dem Roon Server, der Headless (ohne Grafikelemente) war, auch vorher schon möglich. Die neue Philosophie bestätigt den Kurs der Aufteilung von Aufgaben. Die Klangverschlechterung bei Taiko Audio aufgrund erhöhter Festplattenaktivitäten zeigt, was es bedeutet, die Speicherung von Daten nicht von der eigentlichen Musikverarbeitung zu trennen.

Das HQPlayer Update brachte eine Verbesserung der Filterverarbeitung durch E-Cores, eine geeignete CPU vorausgesetzt.

Ich kann jedem nur empfehlen das Beste aus zwei Welten zu verwenden: Roon als sehr moderne bedienerfreundliche Benutzeroberfläche und den HQPlayer für das Upsampling.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Die Umsetzung meines neuen Hörzimmers

Einleitung

Die Planung eines neuen Hörzimmers wurde in den letzten Monaten in die Praxis umgesetzt.

Bis auf wenige Kleinigkeiten wurde alles mit sehr gutem Ergebnis gemäß meiner Planung verwirklicht.

Grundlagen

Den richtigen Hörabstand finden

Es handelt sich um einen 3,7 m x 4,7 m kleinen Raum. Bei rund 17 m² ist klar, dass ein Fernfeldhören nicht möglich ist.

Sehen wir uns kurz die Unterschiede an:

Fernfeldhören

Das Fernfeldhören beschreibt das Hören in größerer Entfernung zur Schallquelle oder zum Lautsprecher. Hierbei ist der Zuhörer in der Regel mehrere Meter oder sogar viele Meter von der Schallquelle entfernt. Im Fernfeld sind die Reflexionen von Wänden, Decken und Böden sowie die Raumakustik stärker wahrnehmbar. Diese Reflexionen können den Klang beeinflussen und zu einer gewissen Klangverfärbung führen.

Für das Fernfeldhören eignen sich oft Hornsysteme, welche den Schall stärker auf den Zuhörer bündeln können.

Nahfeldhören

Das Nahfeldhören bezieht sich auf das Hören in unmittelbarer Nähe zum Schallquellenpunkt oder Lautsprecher. In diesem Fall befindet sich der Zuhörer relativ nahe am Lautsprecher, typischerweise in einem Abstand von weniger als einem Meter. Beim Nahfeldhören dominieren die direkten Schallwellen, die direkt von der Schallquelle zum Zuhörer gelangen, während die Reflexionen und Einflüsse der Raumakustik minimiert werden. Dadurch wird ein präziserer und detaillierterer Klang erzeugt.

Nahfeldmonitore werden oft in Tonstudios verwendet, da sie den Tontechnikern ermöglichen, feine Details in der Musikproduktion zu hören und Abmischungen zu präzisieren.

Der Kompromiss: Hören im Mittelfeld

Bei meinen Sonus Faber Amati Futura Lautsprecher handelt es sich um ein 3,5 Wegesystem. Der untere 22 cm Tieftöner blendet sich bei 80 Hz aus, der zweite Tieftöner geht bis 220 Hz, der Mitteltöner geht bis 3.300 Hz, ab da übernimmt der Hochtöner. Der Frequenzbereich liegt zwischen 20 Hz und 30 kHz (in Abhängigkeit der Aufstellung im Raum).

Bei Mehrwegesystem wie diesen geht kein Nahfeldhören, da man sonst die einzelnen Chassis heraushören würde. Das Hören im Fernfeld ist aufgrund des breit streuenden Lautsprechers nicht ratsam. Der Kompromiss liegt also im Hören im Mittelfeld zwischen 2 – 3 m.

Raummoden kalkulieren

Der Schall unterliegt Gesetzmäßigkeiten, die berechnet werden können. Raummoden entstehen durch Reflexionen von Schallwellen an den Wänden, Decken und Böden eines Raums. Diese Reflexionen führen dazu, dass sich Wellen in bestimmten Bereichen des Raums verstärken und in anderen Bereichen abschwächen. Bei einer halben Wellenlänge (hin und zurück) zwischen zwei parallelen Wänden tritt eine Erhöhung der Lautstärke (Peak) auf. Bei einer viertel Wellenlänge wird dagegen der Bass ausgelöscht (Dip).

Schröderfrequenz

Die Schröderfrequenz bezieht sich auf eine wichtige Kennzahl in der Raumakustik, benannt nach dem bekannten deutschen Physiker Manfred R. Schröder. Sie ist definiert als die Frequenz, unterhalb derer sich Schallwellen im Raum hauptsächlich als Strahlung ausbreiten und oberhalb derer sich Schallwellen hauptsächlich als Wellenverhalten manifestieren.

In einem typischen Raum werden Schallwellen durch Reflexionen an den Wänden, Decken und Böden reflektiert. Bei niedrigen Frequenzen ist die Wellenlänge des Schalls im Vergleich zur Raumgröße groß genug, dass der Schall hauptsächlich als geradlinige Strahlung betrachtet werden kann. Bei höheren Frequenzen wird die Wellenlänge kleiner und die Reflexionen werden dominanter, was zu einem komplexeren Wellenverhalten führt.

Die Schröderfrequenz wirkt sich im Bass sehr störend aus. Das liegt vor allem an den großen Wellenlängen, die sich nach einer einfachen Formel berechnen lassen: Schallgeschwindigkeit 343m/sec geteilt durch Frequenz gleich Wellenlänge

  • 343m/sec : 100Hz = 3,43m Wellenlänge
  • 1/2 = 1,72 Wellenlänge = Erhöhung
  • 1/4 = 0,86 Wellenlänge = Auslöschung

Die Schröderfrequenz ist für jeden Raum unterschiedlich und hängt auch von der Nachhallzeit ab. Bei einer typischen Nachhallzeit von 0,6 Sek. geht der kritische Bereich in meinem Raum bis 230 Hz. Bei meiner derzeitigen Nachhallzeit von 0,3 Sek. reduziert sich der kritische Bereich auf 163 Hz.

Kalkulatoren gibt es im Internet: Akustikrechner: Raummoden (acoustic.ua) oder Raummoden Rechner – Trikustik.

Simulation der Raummoden

Glücklicherweise gibt es für die Kalkulation den hunecke.de | Lautsprecher-Rechner. Als erstes werden die Bauweise und Maße des Raums erfasst. Als zweites habe ich die Lautsprecher konfiguriert. In meinem Fall als klassisches Stereo Setup. Es können sogar Absorberelemente für den Nachhall konfiguriert werden – das war wahrscheinlich der ursprüngliche Zweck dieser Seite. Das Schöne ist, dass die Positionen der Lautsprecher, als auch der Sweet Spot beliebig mit der Maus verschoben werden können. Mit dem Verschieben ändert sich der angezeigte Frequenzbereich im Bass. Außerdem werden mit roten und grünen Quadern die besten Hörpunkte angezeigt.

Das Ziel liegt in einer möglichst gleichmäßigen Basswiedergabe. Bei kleinen Räumen eine Unmöglichkeit. Irgendwas ist immer. Deshalb kann man nur versuchen, die Peaks und Dips gering zu halten.

Nach einigem Ausprobieren könnte der Hörabstand bei ca. 2,2 m und die Basisbreite der Lautsprecher bei ca. 2,3 m liegen. Ein gleichseitiges Stereodreieck muss nicht immer sein, aber es muss mindestens gleichschenklig sein. Damit habe ich in anderen Räumen sehr gute Erfahrungen gemacht.

Unten im Bild ist eine Erhöhung um 20 dB des Basses bei 40 Hz zu sehen. Leider auch zwei Auslöschungen um 10 dB bei 60 Hz und 70 Hz. Zum Glück alles sehr schmalbandig. Hier ist für mich klar, dass in jedem Fall eine digitale Raumkorrektur erfolgen muss. Diese Hörsituation mit Raummoden wird bei den meisten so sein.

Strikte Symmetrie

Wenn ich eins bei der Aufstellung der Lautsprecher gelernt habe, dann ist es die zentimetergenaue Beachtung der Symmetrie. Ich verwende dafür einen Laser Entfernungsmesser. Denn der Schall soll beim linken Ohr genauso zeitrichtig ankommen wie beim rechten Ohr. Das gelingt nur, wenn idealerweise die Rückenwand-/ und Seitenwandabstände und möglichst auch die Beschaffenheit exakt identisch sind. Hier kann man oder muss man sogar mit Absorbern und Diffusoren nachhelfen. Siehe auch mein Newsletter: Wie du deine HiFi-Anlage besser nicht aufstellst – ein Erfahrungsbericht.

Absorber

Akustische Absorber dienen dazu, Schallenergie zu absorbieren und zu reduzieren. Sie absorbieren Schallwellen, indem sie sie in mechanische Energie (meistens in Form von Wärme) umwandeln. Absorber werden verwendet, um Nachhall und störende Schallreflexionen in einem Raum zu reduzieren. Dadurch wird die Klangqualität verbessert, da unerwünschte Schallwellen, die an Wänden, Decken und Böden reflektiert werden, minimiert werden.

Akustische Absorber bestehen häufig aus porösen Materialien wie Schaumstoff, Mineralwolle oder speziellen Schallabsorptionsplatten. Sie werden in der Regel an den Wänden, Decken oder in Ecken eines Raumes angebracht, um eine effektive Schallabsorption zu erreichen.

Diffusoren

Akustische Diffusoren werden verwendet, um Schallwellen in verschiedene Richtungen zu streuen oder zu verteilen, anstatt sie zu absorbieren. Wenn Schallwellen auf eine glatte Oberfläche treffen, werden sie normalerweise reflektiert, wodurch starke und gerichtete Reflexionen entstehen können. Diffusoren sind so konstruiert, dass sie diese Reflexionen aufbrechen und in verschiedene Richtungen streuen, was zu einer gleichmäßigeren Verteilung des Schalls im Raum führt.

Durch den Einsatz von Diffusoren wird der Raumklang diffuser und angenehmer, da störende Schallreflexionen reduziert werden, ohne den Raum zu „trocken“ wirken zu lassen, wie es bei einer übermäßigen Schallabsorption der Fall sein könnte.

Diffusoren können in verschiedenen Formen und Materialien ausgeführt werden, einschließlich gewellter Oberflächen, Lamellenstrukturen oder geometrischer Muster. Sie werden häufig an den Rückwänden, Seitenwänden oder Decken eines Raumes platziert, um die Reflexionen zu kontrollieren und eine bessere Klangqualität zu erzielen.

Nachhallzeit

Die optimale Nachhallzeit in geschlossenen Räumen ist von entscheidender Bedeutung für die Akustik und den Komfort in diesen Räumen. Nachhallzeit bezieht sich auf die Zeit, die benötigt wird, damit der Schallpegel in einem Raum nach dem Abschalten der Schallquelle abnimmt.

Eine angemessene Nachhallzeit trägt zu einer besseren Sprachverständlichkeit, einer angenehmen Hörumgebung und einer verbesserten klanglichen Wiedergabe bei. In Räumen mit zu langer Nachhallzeit kann der Schall mehrfach reflektiert werden, was zu einem unklaren Klang führt und die Sprachverständlichkeit beeinträchtigt. Besonders in Veranstaltungsorten wie Theatern, Konzertsälen oder Konferenzräumen ist eine klare Sprachübertragung entscheidend.

Eine optimale Nachhallzeit ist wichtig für die korrekte Wiedergabe von Musikinstrumenten und Gesang. Zu viel Nachhall kann die Klangqualität beeinträchtigen, indem einzelne Töne verschwimmen oder die Klangtextur verloren geht. In der Regel soll die Nachhallzeit 0,6 Sekunden nicht überschreiten.

Umsetzung in der Praxis

Aufstellung der Anlage und der Akustikelemente

Der Raum

Bei einem rechteckigen Raum dreht sich als erstes die Frage darum, ob die Lautsprecher auf die kurze Wandseite oder auf die lange Wandseite gestellt werden. Wie im Bild unten zu sehen ist, habe ich mich aufgrund der Symmetrie für die kurze Seite entschieden. Würde ich die lange Seite nehmen, wäre auf der einen Seite die Tür und auf der anderen das Fenster, die den Schall unterschiedlich reflektieren würden. Die Hörplatz müsste näher an die Rückwand positioniert werden, was ebenfalls ungünstige Schallreflexionen begünstigen würde.

Zufälligerweise ist das bodentiefe schallharte Fenster genau mittig im Raum und wurde mit einem Akustik Vorhang entschärft. Die Raumecken sind besonders empfindlich für Bassmoden, hier könnten noch Basstraps zum Einsatz kommen. Im Moment verzichte ich darauf

Hinter der Hörposition ist ein Bücherregal, welches als natürlicher Diffusor, aber auch als Absorber wirkt. Die Lautsprecher stehen relativ nah an den Seitenwänden (70 cm gemessen vom Hochtöner). Hier weiß ich aus Erfahrung, dass Wanddiffusoren sehr gute Dienste leisten werden. An der Decke sollen Absorber den Nachhall dämpfen. Auf dem Parkett liegt ein Hochflorteppich.

Akustikvorhang

Ich entschied mich für das vollflächige Akustikgewebe ABSORBER LIGHT. Mikroschlitze im Gewebe sorgen für einen Schallabsorptionsgrad nach ISO 11654: αw = 0,80 (Schallabsorberklasse: B), was wirklich viel ist.

Unten in den Messungen siehst du in den Nachhallzeiten, dass der Akustikvorhang ab 300 Hz den Nachhall von 0,4 Sek. auf 0,3 Sek. deutlich reduziert hat.

Seitenwanddiffusoren

Mit Seitenwanddiffusoren habe ich sehr gute Erfahrungen gemacht. Diesmal soll es etwas ganz Besonderes sein: Formfeld 1 vom Münchner Unternehmen Vorhammer Computational Design. Das Design ist inspiriert vom natürlichen Schwarmverhalten von Fischen und Vögeln und wird als Wandpaneel angeboten.

Mit der Lochperforation kann es zusätzlich als Absorber genutzt werden. Für die perfekte Symmetrie habe ich das Muster exakt spiegelbildlich produzieren lassen, so dass an beiden Wänden die Diffusion und Absorption gleich erfolgt. Sogar die Löcher sind absolut identisch. Möglich macht es eine computergesteuerte CNC-Fräse.

Deckensegel

Deckensegel sind es nicht geworden, da ich keine Lust auf Bohrtätigkeiten hatte. Beim Hersteller aus Österreich ist es geblieben: Tante Lotte Design GmbH. Es handelt sich um eine selbstklebende Akustikplatte mit dem bezeichnenden Namen „Klebeschaf Apps“ aus Schafwolle (Tiroler Schurwolle). Hier sind einige Eigenschaften laut Hersteller:

– Verbesserung der Nachhallzeit: Alpha-w 0,35
– Regulierung des Raumklimas (Luftfeuchte)
– Filterung von Giftstoffen (Formaldehyde) aus der Raumluft
– allergiefrei, mottengeschützt
– schmutzabweisend

Da ich den Raum nicht Überdämpfen will, habe ich mit 6 Apps (45x45x1,2 cm) begonnen. Gegebenenfalls folgt mehr.

Teppich und Sessel

Um die Bodenreflexionen wirksam zu unterdrücken entschied ich mich für den Hochflorteppich SOLO (rolf-benz.com). Reine Schurwolle ist schmutzabweisend, elastisch, schalldämmend und nimmt im Gegensatz zu Kunstfasern kaum Gerüche an.

Mein bewährter Leolux Sessel Scylla – Leolux ist sehr bequem und hat vor allem eine niedrige Rückenlehne. Achte bei deinem Sessel darauf, dass der Schall nicht von einer hohen Rückenlehne, womöglich noch aus Leder, reflektiert wird. In meinem Fall kommt der Schall ungehindert am Kopf vorbei und wird an der Rückwand durch Filz Absorber (Tür) und der Bibliothek absorbiert und zerstreut.

HiFi Rack

Meine Geräteplattform der HY Serie | Selected High-End AV Racks | Solidsteel konnte ich weiterverwenden. Ich schätze den modularen Aufbau sehr. Jede Plattform ist von der anderen entkoppelt. Die Rohre sind aus massivem Stainless Stahl und wiegen eine Menge. 

Verkabelung

Im Bild unten sieht die Kabelei richtig chaotisch aus, folgt aber einem bestimmten System. Im Newsletter Kabel für die HiFi-Anlage richtig verlegen habe ich beschrieben, dass eine falsche Verlegung der Kabel zu erheblichen Klangeinbußen führen kann. Der Grund liegt in den elektromagnetischen Interferenzen (EMI – Electromagnetic Interference) und Hochfrequenzstörungen (RFI – Radio Frequency Interference).

Verlege die stromführenden Leiter wie AC-Kabel (Wechselstromkabel) oder DC-Kabel (Gleichstromkabel) nie im gleichen Kabelschacht oder parallel mit den signalführenden Leitern. Das sind NF-Kabel (Niederfrequenzkabel), LS-Kabel (Lautsprecherkabel) und HF-Kabel (Hochfrequenzkabel), wobei letztere eine Klasse für sich bilden und getrennt verlegt werden sollen.

Wenn eine räumliche Trennung nicht möglich ist, sollen sich die unterschiedlichen Kabeltypen im 90° Winkel kreuzen. Die LWL-Kabel (Lichtwellenleiterkabel) sind zwar gegen EMI/RFI unempfindlich, aber beachte beim Verlegen den Biegeradius.

Was habe ich mich schon beim Kabel verlegen oder beim Austausch von Kabel verrenken müssen. Meine Frau bemerkte treffend, dass die Geräte „falsch rum“ im Rack stehen. Ich wollte diesmal, dass die Kabel richtig gut zugänglich sind. Unten sind die Netzleitungen zum GigaWatt PC4-EVO+ zu sehen. Getrennt nach High Power, Analog und Digital. Die Stromzufuhr läuft vom Sicherungskasten separat.

Nachtrag vom 25.05.2024: Die Kabel waren mir dann doch zu chaotisch verlegt. Ein Teil der Kabel ist unter dem Solidsteel Rack verschwunden und die Verkabelung ist jetzt viel geordneter:

Obwohl mein Gerätepark nach mehr aussieht, haben sich die Komponenten nicht verändert: Sonus Faber Amati Futura | T+A M10 | T+A SDV 3100 HV | fis Audio PC mit HQPlayer & fis Audio Server mit Roon | GigaWatt PC4-EVO+ | JCAT OPTIMO S ATX | FARAD Super10 & Super3 | Afterdark Buffalo Switch | fis Audio Cables | Solidsteel HJ-3 / HY-A.

Verifizierung durch Messungen

Die Theorie muss sich durch die Praxis bestätigen. Deshalb sind umfangreiche Messungen mit unterschiedlichen Aufstellungen wichtig.

Nachhallzeit

Mit Acourate – AudioVero lassen sich durch Eingabe der Raummaße und Vergleiche mit gängigen Normen sehr gut die Nachhallzeiten messen und auswerten. Kleinere Räume wie meiner benötigen eine stärkere Dämpfung der Nachhallzeit als größere. Meine durchschnittliche Nachhallzeit liegt bei rund 0,3 Sek. ab 300 Hz. Das ist wenig, aber es geht noch weniger. Zum Vergleich: Musikstudios sind in der Regel stark auf 0,2 Sek. bedämpft.

Oben erwähnte ich es schon, dass der Akustikvorhang sehr wirksam den Nachhall bedämpft. Unten im Bild ist zum Vergleich eine Messung ohne Akustikvorhang. Hier ist gut zu erkennen, dass der Nachhall ab 300 Hz noch bei rund 0,4 Sek. liegt. Das ist bei meinem kleinen Raum schon das obere Limit.

Korrektur des Frequenzgangs

Die Simulation im hunecke.de | Lautsprecher-Rechner zeigte die Probleme bei den Raummoden bereits gut auf. Die Simulation zeigte einen kräftigen Peak zwischen 30-40 Hz und einen Dip ab ca. 50 Hz. Die dünne blaue Linie ist der Frequenzgang ohne Korrektur und zeigt genau das. Die rote Linie zeigt die Korrektur.

Ohne Korrektur war der Bass aufgedickt und unpräzise und verdeckte den Mittel-/Hochtonbereich.

Korrektur der Sprungantwort

Vielen denken bei der Raumkorrektur nur an den Frequenzgang. Mittlerweile halte ich die Korrektur des Timings (Phase) für noch wichtiger. Gerade bei Mehrwegesystemen eilt der Hochtöner (hier umgekehrte Polarität) dem Mittel-/ und Tiefton voraus. Immerhin laufen beide Lautsprecher aufgrund der perfekten Symmetrie im Timing parallel. Das ist eher selten der Fall.

Wer auf Percussion und Transienten Wert legt kommt meines Erachtens nicht um die Korrektur der Sprungantwort herum. Unten im Bild ist gut zu sehen, dass sämtliche Chassis zeitgleich den gleichen Sprung nach oben machen.

Die Messungen kannst du selbst mit geringen finanziellen Mitteln durchführen. Siehe mein Newsletter:

Schwieriger ist die Erstellung von Faltungsfiltern. Aber auch das kann jeder lernen, siehe mein Newsletter:

Zusammenfassung

Eine gute Planung erleichtert die Umsetzung in der Praxis. So habe ich mich schon früh für die kurze Wand entschieden, weil nur so die von mir gewünschte Symmetrie umzusetzen war.

Bei der Aufstellung der Anlage und der Akustikelemente spielt der Raum eine große Rolle. An erster Stelle sollen immer „mechanischeOptimierungen stehen. Das betrifft die Aufstellung der Lautsprecher, aber auch die oft unumgänglichen Akustikelemente.

Die können optisch sehr ansprechend sein. Ein Akustikvorhang, Seitenwanddiffusoren, Deckensegel, Teppich und Sessel sind nicht nur akustisch wertvoll, sondern sorgen auch für die Wohlfühlatmosphäre.

Beim HiFi Rack bevorzuge ich modulare Systeme. Die einzelnen Geräteplattformen sollen entkoppelt sein. Die Verkabelung soll möglichst „luftig“ verlegt sein. Stromführende Kabel sollen von signalführenden Kabel strikt getrennt verlegt werden.

Verifizierung durch Messungen helfen bei der Aufstellung. So habe ich zum Beispiel die Lautsprecher etwas näher zur Rückwand gestellt, um den Bass zu optimieren. Mein Stereodreieck beträgt ca. 2,5 m und ist etwas größer geworden als geplant. Mit Sicherheit folgen weitere Feinkorrekturen. Ein Audiophiler ist nie fertig, wo bleibt sonst der Spaß?

Die Nachhallzeit kannst du nicht elektronisch korrigieren, sondern nur durch Akustikelemente. Bei mir bewirkt zum Beispiel der Akustikvorhang eine hervorragende Dämpfung.

An letzter Stelle stehen die elektronische Korrektur des Frequenzgangs und vor allem die Korrektur der Sprungantwort (Timing).

Und wie hört es sich an? Großartig! Bei einem schwarzen rauschfreien Hintergrund und sehr guter Raumakustik kannst du die Musik sehr leise hören und bemerkst trotzdem viele Details und genießt den präzisen Bass.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Ein neues Gehäuse und passende LAN-Kabel für das DIY-Projekt Buffalo BS-GS2016

Einleitung

Im Newsletter DIY-Projekt Buffalo BS-GS2016 als Klon des Melco S100 berichtete ich von der Strommodifikation und der Einrichtung eines Managed Switch.

Die Planung eines neuen Hörzimmers befindet sich jetzt in der Umsetzungsphase. Dazu folgt ein eigener Newsletter. Der neue Schaltschrank stellt die Verbindung per LAN-Kabel an die verschiedenen Räume her. Das Originalgehäuse des Buffalo BS-GS2016 ist für den Schaltschrank zu groß, weshalb sich der Handlungsbedarf für ein neues Gehäuse ergab.

Grundlagen

Geschirmtes oder ungeschirmtes Internet Kabel

Im Schaltschrank münden die LAN Kabel aller Wohnräume. Für die Verteilung dient der Buffalo BS-GS2016. Bei den LAN Kabel hat man die Qual der Wahl.

UTP vs. FTP

Es gibt eine grobe Unterscheidung zwischen ungeschirmten UTP Kabel und einem geschirmten FTP- oder STP Kabel. UTP ist die Abkürzung für Unshielded Twisted Pair. FTP bedeutet Foiled Twisted Pair und STP Shielded Twisted Pair.

Der Aufbau, und damit die Schirmung von Internetkabeln ist mit Buchstaben gekennzeichnet.

  • U – Ungeschirmt: ohne Abschirmung.
  • F – Foil: Abschirmung mit Folie um die Adernpaare.
  • S – Geflecht: Die Adernpaare sind mit einem Metallgeflecht abgeschirmt.

Die Wahl zwischen UTP, FTP oder den zahlreichen Varianten hat Auswirkungen auf die Störungsfreiheit, wie unten in der Tabell zu sehen. Interessant sind die EMI-Eigenschaften: 1 (*) – schlechteste Eigenschaften, 5 (*****) – beste Eigenschaften.

Laut dieser Tabelle würde jeder das SF/FTP-Kabel empfehlen.

Gleichtaktstörungen

Gleichtaktstörungen, auch als Common-Mode-Störungen bekannt, treten in elektrischen oder elektronischen Systemen auf, wenn unerwünschte Signale oder Störungen auf gleiche Weise auf alle Leitungen oder Komponenten eines Systems einwirken. Diese Störungen können verschiedene Quellen haben, wie elektromagnetische Felder, unsymmetrische Erdpotentialunterschiede oder externe Störsignale.

Gleichtaktstörungen können die Signalqualität in einem System beeinträchtigen und zu Fehlfunktionen oder Datenverlust führen. Und wirken sich auch auf den Klang aus.

Gleichtaktstörungen von Ethernet werden über die Mittelanzapfung der Transformer in den Endgeräten über einen Kondensator auf die Gehäuse-Masse abgeführt/gekoppelt und gelangen hierdurch in das Masse-System des Endgeräts. Zusätzlich gelangen die Störungen, sofern diese nicht komplett auf Kabelseite des Transformers abgeführt werden können (und das ist in die Regel) auf der anderen Seite des Transformers in die System-Masse. Quelle: Messungen von Ethernet-Infrastruktur – Switches (Nur Lesen) – open-end-music-professional

Dummerweise werden diese Gleichtaktstörungen bei FTP-Kabel über den aufgelegten Schirm über die Masse transportiert. Bei UTP ist das nicht der Fall, weil kein Schirm aufliegt. Freilich macht die fehlende Schrimung UTP-Kabel anfällig für EMI/RFI-Störungen.

Umsetzung in der Praxis

Das neue Gehäuse

Die Platine des Buffalo BS-GS2016, welche auch für den Melco S100 verwendet wird, ist recht kompakt. So lag es nahe ein passendes Gehäuse zu konstruieren. Das geht sehr gut über Schaeffer AG Gehäuse (schaeffer-ag.de). Mit dem kostenlosen Frontplatten Designer sind gute Ergebnisse möglich. Nur aufpassen muss man, wie wir gleich sehen werden.

Alle Gehäuseteile kommen gut geschützt an.

Und hier ist das Malheur passiert: Die Halterungen der Platine in Schraubenform.

Richtig sind aber Buchsen! Ein teurer Spaß. Wenn du dich fragst, warum Geräte so teuer sind, obwohl das Material vergleichsweise preiswert ist, dann ist das ein Erklärungsansatz: Pleiten, Pech und Pannen in der Entwicklung. Forschung & Entwicklung ist teuer.

Die Buchsen passten zum Glück für die Platine. Beachte den beeindruckenden Kühlkörper. Der Hochleistungs-Chip ist eines der Geheimnisse des Buffalos für beste und störungsfreie Leistung.

Das direkt gelötete DC-Kabel von fis Audio wird von meiner selbst konstruierten Kabelklemme gehalten. Huckepack kommt die Halterung für den Schaltschrank.

Ungeschirmtes UTP RJ45 LAN Kabel

Damit keine Gleichtaktstörungen über die Schirmung in die Gehäusemasse gelangen, habe ich mich für diese LAN-Kabel im Industriestandard entschieden: Dünnes Lan Kabel | Netzwerkkabel RJ45 (PVC CM, Blau, 0,6m) – FS.com Deutschland.

Auffällig ist das Kunststoffgehäuse des RJ45-Steckers. Damit können keine Störungen übertragen werden.

Damit kein EMI/RFI über die ungeschirmte Außenhülle des Kabels gelangt, habe ich die sensiblen Stellen mit dickem Kupferblech ausgekleidet. Die Kabel sind mit 0,6m recht kurz gehalten.

Eine gute Belüftung darf nicht fehlen.

Zusammenfassung

Beim Switch im Schalt-/ oder Serverschrank kommt es darauf an, ob du ein geschirmtes oder ungeschirmtes Internet Kabel verwenden möchtest.

UTP ermöglicht, dass sich Gleichtaktstörungen nicht über die Masse bei den angeschlossenen Geräten breit macht und den Klang trübt. Aufgrund der fehlenden Schirmung musst du aber darauf achten, dass du dir nicht anderswo EMI/RFI-Störungen einfängst. Halte die Kabel daher kurz und entfernt von Wechselstrom. Emittierende Geräte kannst du mit Kupfer abschirmen.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Erfahrungsbericht fis Audio PC mit FARAD SuperATX (Prototyp)

Einleitung

Jeder PC benötigt Gleichstrom (DC). Aus 230V Wechselstrom (AC) werden in der ersten Stufe meist 19V Gleichstrom (DC) erzeugt. In der zweiten Stufe werden aus diesen 19V nach dem jetzigen ATX Standard die Motherboards mit 3,3V, 5V und 12V bedient. Es gibt übrigens einen neuen Standard ATX12VO, der nur noch 12V bereitstellt. Dieses Konzept wäre für einen Audio PC schlecht, da die einfachen Schaltregler dann direkt auf dem Motherboard sitzen.

Nun gibt es natürlich viele Netzteile mit ATX Spezifikation. Diese bringen die notwendigen Molex ATX-Anschlüsse gleich mit. Die von der Computerindustrie bereitgestellte Stromversorgung sind jedoch oft Schaltnetzteile von geringer Bauteilequalität und hohem Ripple Noise. Die ATX-Kabel sind meist von dünnem Querschnitt, schlechter Materialqualität und ungenügend geschirmt. Das machen wir mit dem fis Audio PC deutlich besser.

Grundlagen

Transformator

Wirkprinzip

Ein Trafo besteht meist aus zwei oder mehr Spulen (Wicklungen), die in der Regel aus isoliertem Kupferdraht gewickelt sind und sich auf einem gemeinsamen Magnetkern befinden. Ein Transformator wandelt eine Eingangswechselspannung, die an einer der Spulen angelegt ist, in eine Ausgangswechselspannung um, die an der anderen Spule abgegriffen werden kann. Dabei entspricht das Verhältnis von Eingangs- und Ausgangsspannung dem Verhältnis der Windungsanzahlen der beiden Spulen. So wird zum Beispiel bei einem Windungsverhältnis von 20 zu 1 eine Eingangsspannung von 240 Volt in eine Ausgangsspannung von 12 Volt transformiert.

Verlustleistung

Das Problem unnötig hoher Verlustleistungen bei Linearnetzteilen tritt immer dann auf, wenn die Ausgangsspannung des verbauten Trafos für den konkreten Einsatzzweck zu hoch gewählt wurde. Dies kann bei handelsüblichen Linearnetzteilen vorkommen. Besonders dann, wenn mehrere Ausgangsspannungen gewählt werden können und sich der Auswahlbereich auch noch über den tatsächlich benötigten Wert hinaus erstreckt.

Per Schalter seine Spannungen auswählen zu können ist zwar sehr bequem. Die sehr hohe Verlustleistung macht sich jedoch mit einer hohen Abwärme bemerkbar. Da hat sich schon so manches Netzteil in „Rauch“ aufgelöst.

Diese Probleme habe ich bei FARADs linearen Netzteilen noch nie festgestellt, weshalb ich deren Produkte empfehle. Zum Beispiel hat das FARAD Super10​ für jede Ausgangsspannung ein optimiertes Modul und einen passgenauen Netztransformator und vermeidet dadurch die Nachteile einer hohen Verlustleistung über verschiedene Spannungen. Ein Spannungswechsel ist nachträglich trotzdem möglich und wird von FARAD ausgeführt.

FARAD SuperATX

Technischer Aufbau

Drei Transformatoren

Das FARAD SuperATX Netzteil hat 3x 150VA dreifach geschirmten kundenspezifischen Transformatoren. Einer für die CPU, einer für das Motherboard und einer für SSDs und Peripheriegeräte.

  • Transformator 1 und Rail 1: 12V/8A CPU EPS (max. 100W TDP)
  • Transformator 2 und Rail 2+3: ein volllineares 24-poliges ATX-Steckernetzteil
  • Transformator 3 und Rail 4+5: Dreifache Peripherieausgänge mit 5V/3A (Gesamtsumme 7,5A) und 12V/3A (Gesamtsumme 3A). Einer der Ausgänge kann auf „always on“ umgeschaltet werden.

Weitere technische Spezifikationen

  • Glättungskapazität von ca. 250.000uF. Langlebige automotive Kondensatoren mit niedrigem ESR und Hf-Choke-Pi-Filtern.
  • 24x 15F Supercaps bringen eine effektive Kapazität von 17,5F bei voller Spannung. Das sind 17.500.000uF Gesamtpufferkapazität vor den endgültigen Reglern! Diese Supercaps wirken wie eine Batterie und sind in den Super3 und Super10 Netzteilen erprobt.
  • Doppelte Low-Noise-Regelung mit Hf-Post-Pi-Filterung für noch geringeres Ausgangsrauschen.
  • Mikroprozessorschutz an allen Spannungen (Über- und Unterspannungen, Kurzschlüsse usw.) und Kommunikation mit dem MoBo.
  • Ground-Lift-Schalter und Ground-Post, vergoldete Molex-Ausgangsanschlüsse.

Die Anschlüsse

Während das FARAD Super10 Netzteil noch einen DC/ATX-Konverter benötigt, um aus 19V die drei benötigten ATX Ausgangsspannungen mit 3,3V, 5V und 12V zu erzeugen, ist das beim FARAD SuperATX nicht mehr erforderlich. Denn hier werden die Molex Stecker direkt angeschlossen.

Das Prinzipien-Bild unten verdeutlicht die Anschlüsse. Der wichtigste Anschluss ist der für die CPU, welches mit einem 8 Pin Molex Stecker realisiert wird. Für eine PCIe-Karte für USB oder LAN können 5V abgezweigt werden. 3A reichen dafür in der Regel aus. Das Motherboard wird mit allen drei Spannungen (3,3V, 5V und 12V) von einem 24 Pin Molex Stecker mit sauberen Strom versorgt.

Der Test

Testaufbau

Beim FARAD SuperATX Netzteil handelt es sich um einen Prototypen, den mir Mattijs de Vries von Farad power supplies zu Testzwecken zur Verfügung gestellt hat. Für mein Review erhielt ich kein Honorar. Ich bin jedoch Händler von FARAD Produkten. Diese Informationen dienen zur Offenlegung meiner finanziellen Interessen.

Im Bild unten ist im Vordergrund der fis Audio PC zu sehen, welches als Betriebssystem das HQPlayer OS (Linux Echtzeit Kernel) hat. Bisher wurde es von dem JCAT OPTIMO S ATX mit sauberen Strom versorgt. Für den Test wurden das 24 Pin Molex Kabel für das Motherboard und das 8 Pin Molex Kabel für die CPU getauscht.

Im Hintergrund wurde das FARAD SuperATX mit der legendären fis BF Blackmagic Netzleitung an den Reference Power Line Conditioner GigaWatt PC-4 EVO+ angeschlossen.

Probleme beim Power On / Off

Mattijs warnte mich vor, dass es bei modernen Motherboards zu Problemen beim Einschalten kommen kann. Und so war es auch bei mir. Das Motherboard quittierte die Stromzufuhr noch vor betätigen des Power On Schalters mit roten LEDs und in der Fehlercode-LED mit einer „- -“ Anzeige. Erst nach einem Reset des SuperATX konnte ich dann fehlerfrei booten.

Zu allem Unglück ließ sich der fis Audio PC anschließend nicht mehr herunterfahren. Dies wurde mit dem Fehlercode „95 – PCI Bus Request Resources“ verhindert.

Die Ursache der Power On / Off Fehler liegt lt. Mattijs darin, dass die neueren Motherboards schon im Standby eine höhere Stromstärke bei 5V verlangen. Das SuperATX liefert mit 5V/3A offensichtlich zu wenig Strom. FARAD hat bereits eine Lösung dafür und die endgültige Version wird dieses Problem nicht mehr haben.

DSD1024 ist mit leichten Modulatoren möglich

Mit dieser Einstellung (DSD1024 und dem neuen experimentellen Modulator AHM7EC5L) war der Klang traumhaft. Der Bass ist sehr sauber und geht sehr tief. Die Instrumententrennung ist sehr gut, so dass die Bühnenabbildung sensationell ist. Die Höhen würde ich als seidig beschreiben, ganz ohne Schärfen.

Ich möchte nicht unerwähnt lassen, dass von den drei Trafos keinerlei Brummen zu hören war. Das FARAD SuperATX Netzteil ist völlig geräuschlos.

Version 2.0

FARAD hat schon einige Ideen für die Version 2.0, welche eine höhere CPU Rechenlast erlauben wird.

Zusammenfassung

Ich habe mich sehr auf das FARAD SuperATX gefreut. Es zeichnet FARAD aus vor der Produkteinführung umfangreiche Tests durch Dritte durchführen zu lassen. So ist sichergestellt, dass zum Beispiel die Kinderkrankheiten mit den stromhungrigen Motherboards beim endgültigen Produkt beseitigt sind.

Das Upsampling auf DSD1024 mit leichten Filtern und Modulatoren funktioniert sehr gut und der Klang ist traumhaft. Für höhere Anforderungen an die Rechenlast ist die Version 2.0 in Arbeit.

Für den fis Audio PC ist das FARAD Super10 Netzteil weiter gesetzt, welches auskömmliche 19V/10A (rund 200W) zur Verfügung stellt.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Jahresrückblick 2023

Einleitung

Ich bedanke mich herzlich bei den vielen Abonnenten und Mitlesenden. Es sind viele interessante Themen besprochen worden. Deshalb möchte ich im Jahresrückblick 2023 die Inhalte gesammelt darstellen.

Grundlagen

Hörvermögen

Was bringt HiRes, wenn der Mensch nur bis 20 kHz hört?

Ultraschallanteile führen zur verstärkten Hinrnaktivität! Das war für mich der Knaller, obwohl die Forschungsergebnisse schon aus 2000 stammen. Eine weitere Studie aus 2014 zeigte, dass erst ab 32 kHz ein positiver Effekt auftrat. Am stärksten wirkte der Ultraschall zwischen 80 – 88 kHz.

Wenn nur Ultraschall ausgestrahlt wurde, war kein Effekt zu beobachten. Erst in Kombination mit den hörbaren Frequenzen reagiert der Mensch darauf. Möglicherweise ist die Hüllkurve (das Summensignal aller Frequenzen, die in einem Musikstück vorhanden sind) dafür verantwortlich. Denn diese verändert sich mit den Ultraschallanteilen.

Transienten spielen vermutlich auch eine Rolle. Nahmikrofonierte Drum-Kits / Percussions erreichen das 100 kHz Spektrum.

Bist du Grundton- oder Obertonhörer?

Ebenfalls aus der Hirnforschung kommen die Erkenntnisse, dass die Grund- und Obertöne verschiedene Hirnareale unterschiedlich ansprechen. Und der Mensch sehr individuell entweder veranlagungs- oder/und lernbedingt mehr Grund- oder Obertonhörer ist.

Lieben Grundtonhörer schnelle, kurze Impulse, virtuose Fingerübungen und präzise Rhythmen, so schmeicheln dem Obertonhörer lange, getragene Melodien, Klangfarben und Harmonien. Hier geht es zu einem interessanten Selbsttest:

Digitale Signalverarbeitung

Wie arbeitet ein DAC und was kann Upsampling bewirken?

Dieser Newsletter war für manche „Bitperfekt-Hörer“ ein Aufreger. Sie wurden nämlich der Illusion beraubt, dass im DAC kein Upsampling erfolgt. Und doch ist es so. Die meisten DACs haben Chips mit der Delta-Sigma-Modulation. Das sind zum Beispiel ESS Sabre oder AKM Chips.

Hier erfolgt dann im DAC zwangsläufig ein Upsampling auf DSD. Konstruktionsbedingt kommen die DACs nie an die Rechenleistung eines Audio PCs heran. Da werden oft Interpolationen und Festkomma-Berechnungen, sowie Modulatoren niedriger Ordnung eigesetzt. Mit Messungen wurde belegt, wie das Upsampling durch einen Audio PC die Rekonstruktion deutlich verbessern kann.

Zur Vertiefung des Themas sind weitere Newsletter verfügbar:

Welchen Messwerten soll man trauen?

Foren wie Audio Science Review (ASR) müssen sich auf einen gewissen Standard des Messverfahrens einigen, damit die Messergebnisse dauerhaft vergleichbar sind. Auf der anderen Seite sind Empfehlungen aufgrund „nur“ dieser Messwerte mit Vorsicht zu genießen.  

An einem Beispiel wurden durch die Verwendung anderer Testinhalte gravierende Fehler aufgedeckt. Außerdem bin ich der Meinung, dass (noch) nicht alles gemessen werden kann, was wir hören, bzw. im Gehirn verarbeiten.

Neue Thesen zum Reclocking

Dieses Thema regt viele Leute auf. Sie verweisen darauf, dass im DAC bei einer asynchronen Datenübertragung sowieso alles aus dem Puffer gelesen und neu getaktet wird. Und deshalb Jitter keine Rolle spielt.

Auf der anderen Seite gibt es Leute wie mich, die beim Reclocking gravierende Verbesserungen mit konturierterem Bass, gesteigerter Instrumententrennung und klareren Höhen ohne Schärfen feststellen. Die These von UpTone Audio sagt, dass das Phasenrauschspektrum der eingehenden Daten das Phasenrauschspektrum der lokalen Clock überlagert. Allerdings nur im niederfrequenten Bereich (Wander). Clocks mit besten Werten bis 10Hz wie zum Beispiel ein Mutec REF10 sind extrem teuer.

Raumakustik

Wie du mit dem Audio PC die Akustik verbessern kannst

Ich höre oft von Leuten, die mit Kabel, Stromversorgung und neuen Geräten versuchen den Klang zu verbessern. Und sind dann trotzdem unzufrieden. Möglicherweise werden die Auswirkungen des Raums nicht genügend bedacht.

Lautsprecher sollen einen ausreichenden Abstand zur Rück- und Seitenwand haben, um den Raum nicht zu sehr anzuregen. Gewisse Raummoden können aber nicht durch Schieben und Rücken der Lautsprecher kompensiert werden. Denn wir reden hier ab 20 Hz von Wellenlängen von bis zu 17 Metern!

  • 343 m/sec : 20 Hz = rund 17 m (17,15 m) Wellenlänge

Eine große Rolle spielen die Nachhallzeit und der Direkt-/ und Diffusschallanteil. Oft helfen einfache Maßnahmen wie Vorhänge, Teppiche, Deckensegel, Wandabsorber und Diffusoren, die wohnlich gestaltet werden können.

Wenn alle raumakustischen Maßnahmen ausgeschöpft wurden, empfehle ich die digitale Raum- und Lautsprecherkorrektur. Hier können dann zwei Aspekte den Hörgenuss gravierend steigern:

Der Frequenzgang wird geglättet, wobei die schnurgrade Linie nicht das Ideal ist. Vielmehr soll sich die Korrektur an psychoakustischen Effekten orientieren.

Oft wird das Timing nicht bedacht ! Als wesentliche Maßnahme wird die Sprungantwort optimiert. Synchronisiert über beide Lautsprecher. Dies verbessert die Wahrnehmung von Transienten und damit die Ortungsgenauigkeit ganz erheblich.

Weitere Fundstellen

Hard- und Software

fis Audio PC

Was gibt es neues auf dem CPU Markt?

Aufgrund der modularen Bauweise des fis Audio PCs können recht schnell die neuesten und besten Prozessoren eingesetzt werden. Wobei wir immer in das obere Regal (Intel® Core™ i9-13900K) greifen, weil hier die sogenannte Silicon Lottery die höchste Qualität erwarten lässt. Und das Upsampling auf DSD eine sehr hohe Rechenleistung erfordert.

Einen großen technischen Sprung plant Intel mit Arrow Lake, weil als Herstellungsprozess Intel 20A – 3 nm geplant ist. Je geringer die Strukturgröße ausfällt, desto mehr Transistoren können je mm² verbaut werden. Die CPU soll Ende 2024 kommen.

Vergleich Intel vs. AMD Prozessoren

Die Fertigungstechnik ist bei AMD mit 5-nm bei Ryzen™ 9 7950X3D deutlich moderner, als bei Intel mit dem sogenannten Intel-7, welches 10 nm Fertigungsprozess entspricht.

Die Energieeffizienz des AMD 7800X3D hat in den gezeigten Tests begeistert. Nur fällt die Rechenleistung bei mathematisch orientierten Anwendungen stark ab. Hinzu kamen dann noch Probleme bei Überhitzungen der Ryzen-7000-Prozessoren, wenn das EXPO Profil für den Arbeitsspeicher geladen wurde. Ebenso wurden hohe Lastspitzen festgestellt.

Für unseren Anwendungsfall des DSD Upsamplings sehe ich Intel nach wie vor an der Spitze.

Wird es einen fis Audio PC Intel 14. Generation Core (Raptor Lake Refresh) geben?

Intels Nachfolger Raptor-Lake-Refresh überzeugte aufgrund der geringen Leistungszunahme nicht. Im Netz ist von einigen Problemen mit der Motherboard Kompatibilität zu lesen. Da Arrow Lake Ende 2024 kommen soll, bleibt es bis dahin bei der bewährten 13. Prozessorgeneration.

Unterschiedliche Speichermedien für Audio erklärt

Für das Betriebssystem empfehle ich 1 Bit (SLC) Speicher oder 3D XPoint Speicher (Intel Optane). Denn die Vorteile sind erheblich:

  • Geringerer Stromverbrauch und dadurch rauschärmer
  • Geringste Latenzen = größere Verarbeitungsgeschwindigkeit
    Verdoppelt sich für jeden Bit pro Zelle, so wie es auch bei der Energie geschieht.
  • Geringere Latenzen bedeuten auch geringerer Jitter.
  • Sehr lange Haltbarkeit
  • Weniger Fehler
    Die Fehler nehmen für jeden Bit pro Zelle zu und damit die Menge an Error Correction Code im SSD-Controller.

Das Problem schlecht sitzender und heißlaufender PCIe-Karten

Selbst Taiko Audio ist es passiert. Deren Extreme Network Card hatte teilweise einen schlechten Sitz, wodurch kein Verbindung zustande kam.

Mit unserer fis Audio PC Alu Rückblende, erstellt mit CNC Fräsmaschinen aus deutscher Fertigung, bieten wir eine sehr gute Lösung für den stabilen Halt von PCIe-Karten an.

Kabel

Kabel für die HiFi-Anlage richtig verlegen

Eine falsche Verlegung der Kabel kann zu erheblichen Klangeinbußen führen. Der Grund liegt in den elektromagnetischen Interferenzen (EMI – Electromagnetic Interference) und Hochfrequenzstörungen (RFI – Radio Frequency Interference).

Verlege die stromführenden Leiter wie AC-Kabel (Wechselstromkabel) oder DC-Kabel (Gleichstromkabel) nie im gleichen Kabelschacht oder parallel mit den signalführenden Leitern. Wenn eine räumliche Trennung nicht möglich ist, sollen sich die unterschiedlichen Kabeltypen im 90° Winkel kreuzen.

Achte auch auf die Stabilität der Anschlüsse. Wackelnde Stecker können hohe Übergangswiderstände produzieren und verursachen eventuell über einen Lichtbogen Kurzschlüsse.

Was macht ein gutes LAN Kabel aus?

Wichtig ist zu wissen, dass die digitale „0“ und „1“ in einer analogen Technik per Hochfrequenz (HF) übertragen werden. Dabei wertet ein Controller die unterschiedliche Spannungszustände aus.

Wo Strom fließt kann es auch Störungen geben. Zum Beispiel Gleichtaktstörungen und Leckströme. Diese Störungen können sich bis zum DAC übertragen. Hier können Isolatoren und die Unterbrechung der Kabelschirmung für Abhilfe sorgen.

Und es gibt sie doch: Qualitätsunterschiede bei LWL (Lichtwellenleiter)

LWL ist aufgrund der galvanischen Trennung eine lohnende Investition. Auch bei LWL gibt es Qualitätsunterschiede. Das fängt mit Transceivern an, die aufgrund ihres eigenen Rauschens sehr hochwertig sein sollen. Und setzt sich mit den Kabelqualitäten fort. Der Mehrpreis für Grade B ist im Gegensatz zu „audiophilen“ LAN-Kabel dermaßen gering, dass ich es jedem empfehle.

Für kurze Entfernungen kommen auch die preisgünstigen 10G-DAC- und AOC-Kabel in Frage. Das stromreduzierte passive DAC-Kabel hat zum Beispiel ein sehr geringes Eigenrauschen.

Für was soll das Ausphasen von Geräten gut sein?

Über die Erdung (Schutzleiter PE) fließen Ausgleichströme, die das Nutzsignal verändern können. Daher soll die Potenzialdifferenz bei den Geräten klein gehalten werdenAchte bei den Netzleitern daher auf die richtige Phase.

Datenübertragung

Was bringen PCIe-Karten im Audio PC?

Mit den PCIe-Karten bist du sehr flexibel und kannst die nicht audiophilen Computeranschlüsse umgehen. Den Ripple Noise vom Computer umgehst du entweder mit einer galvanischen Trennung per LWL (Lichtwellenleiter) oder mit einer externen Stromversorgung der PCIe-Karte durch ein lineares Netzteil. Ein Reclocking kann Jitter verringern.

Welche neuen Datenübertragungsstandards sind für Audio im Gespräch?

Die heutigen digitalen Schnittstellen sind sehr vielfältig und haben ihre Stärken und Schwächen. In amerikanischen Foren hat sich die Erkenntnis mehrheitlich durchgesetzt, dass Schnittstellen mit hohen Bandbreiten wie 10G aufgrund besserer technischer Spezifikationen den Klang steigern. Auch wenn nur 1G genutzt wird. USB4 steckt für Audio noch in den Kinderschuhen

Kleinere Puffer in den USB- und LAN-Treibern reduzieren unter anderem das elektrische Rauschen. Diesen Punkt greift Taiko Audio mit seiner neuen Schnittstelle XDMI (vormals TACD) auf. Wird das Intervall viel kleiner gemacht, wird ein linearer Datenstrom mit einer sehr hohen Frequenz weit außerhalb des Audiobereichs erzeugt. Das bedeutet ein kontinuierliches Rauschen mit niedrigem Pegel bei sehr hohen Frequenzen.

Wie stellst du die Datenpuffer bei USB und LAN richtig ein?

Ausgehend von den Überlegungen von Taiko Audio oben, kannst mit den Puffereinstellungen bei USB und LAN ähnliches erreichen.

Die Puffergröße hat Auswirkungen auf die Latenzen. Ich empfehle (wie üblich ohne Gewähr) geringstmögliche Pufferwerte zu setzen, welche die Latenzen minimieren. Niedrigste Latenzen verringern:

  • Jitter,
  • Biterrors und
  • Elektrisches Rauschen.

DIY-Projekt Buffalo BS-GS2016 als Klon des Melco S100

Wenn du Löten kannst und Geld sparen möchtest ist das DIY-Projekt Buffalo BS-GS2016 als Klon des Melco S100 vielleicht genau das richtige für dich. Wir bieten den Umbau zwar nicht an, liefern aber gern das DC-Kabel und das lineare Netzteil dazu.

Software

Komfortable Bedienung und bester Klang – geht das?

Wenn du wirklich das Beste willst, trenne deine digitale Strecke in einen Control PC (z. B. Roon) und in einen Audio PC (z. B. HQPlayer) auf. Der Control PC muss nicht besonders leistungsstark sein. Es kann sich auch um ein NAS handeln. Der Audio PC soll in jederlei Hinsicht audiophil und mit geringsten Latenzen sehr leistungsstark sein. Wie zum Beispiel der fis Audio PC.

Warum Interrupts beim Audio PC den Klang massiv beeinflussen

Interrupts sind Unterbrechungen im Computersystem, damit zeitnah auf Ereignisse reagiert werden kann. Auch wenn es nicht zu offensichtlichen Drop Outs kommt, können im Millisekundenbereich störende Artefakte entstehen, allen Puffern zum Trotz. Die meisten Menschen können bereits Latenzen zwischen 2-5 ms erkennen.

Deshalb ist ein duales PC-System wie oben beschrieben auch so sinnvoll. Die Musikverwaltung und Steuerung löst starke Aktivitäten aus, die zu Interrupts führen und die Musikwiedergabe stören.

Welche Windows Einstellungen für Audio wichtig sind

In Windows 11 Pro laufen oft 160 Prozesse, zum Beispiel für Audio unwichtige Drucker-, Kalender- und Mailfunktionen. Oder die voreingestellte Energieoption „Ausbalanciert (empfohlen)“ führt bei der Musikwiedergabe wegen hoher Latenzen zu Drop Outs.

Nicht jeder möchte auf Windows verzichten. Viele haben mit dem Betriebssystem langjährige Erfahrungen und manche Programme gibt es nur für Windows. Zum Beispiel Acourate für die Raumkorrektur.

Die Optimierung von Windows ist jedoch mit Arbeit verbunden. Die Mühe lohnt sich. Die meisten Einstellungen musst du nur einmal tätigen.

HQPlayer 5 Desktop und HQPlayer 5 Embedded 5.0.0 veröffentlicht!

Die Idee des HQPlayers ist die begrenzte Rechenleistung eines DACs durch einen Audio PC zu ersetzen. Der Audio PC kann hochwertigere Modulatoren und Filter verarbeiten. Der fis Audio PC bietet dafür die notwendige Rechenleistung und ist trotzdem lautlos. Der DAC soll dabei im NOS (Non Oversampling) mit geringer Rechenlast in seinem Sweet Spot betrieben werden.

Mit effizienteren Algorithmen und verbesserten Filtern und Modulatoren in der 5. HQPlayer Generation konnte die Soundqualität (SQ) erheblich gesteigert werden. Mit der Spektralanalyse in Echtzeit deckst du Mogelpackungen auf.

Ausblick

Für das neue Jahr habe mich mir schon einige Themen vorgenommen:

  • Test des neuen FARAD SuperATX Netzteils
  • LAN Kabel für den Serverschrank
  • Einrichtung des neuen Hörraums
  • Intels neue Prozessorgeneration mit Arrow Lake

Schreib mir, wenn dich bestimmte Themen interessieren. Wenn es (zeitlich) passt, nehme ich es gerne auf meine Todo-Liste.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Welchen Messwerten soll man trauen?

Einleitung

Jeder möchte natürlich das beste Gerät zum niedrigsten Preis. Und in der Tat kann man preiswerte DACs mit besten technischen Daten kaufen. Am besten verlässt du dich nicht auf die Herstellerangaben, sondern suchst im Internet nach neutralen Messwerten.

Selbst wenn du etwas von Messkoryphäen findest, kannst du dich nicht blind darauf verlassen. Denn das führt zum nächsten Problem: Wird das Richtige gemessen? In diesem Artikel geht es exemplarisch um einen DAC, der die besten Messwerte hatte und trotzdem gravierende Probleme aufwies.

Messungen

Audio Science Review

Im Audio Science Review (ASR) Forum werden regelmäßig Messwerte von Audio Hardware veröffentlicht. Etwas Humor ist immer dabei. Wenn zum Beispiel der kopflose Panther abgebildet ist, weißt du schon wie der Test ausgegangen ist. Jeder kann die Ergebnisse und Beiträge lesen, das Forum ist kostenlos. Jeder kann sein Audio-Equipment kostenlos vermessen zu lassen!

Die Koryphäe

Der sogenannte CFO (Chief Fun Officer) heißt Amir Majidimehr und ist wohl in der Seattle Area im Bundesstaat Washington beheimatet. Er hat einen beeindruckenden Lebenslauf:

  • Unix-„Kernel“-Entwickler (Betriebssystem) 
  • Entwicklung von Motherboards, Audio-Subsysteme, Netzteile, LCD-Displays bei Sony
  • Leitung des Entwicklerteams bei Abekas Video Systems und Pinnacle
  • Leitung der Digital Media Division bei Microsoft

Das Mess Equipment von Audio Precision und Klippel (ASR vermessen Lautsprecher! | Audio Science Review (ASR) Forum) ist beeindruckend. Ich denke man kann davon ausgehen, dass Amir mit den Messgeräten umgehen kann und weiß wovon er spricht.

Messwerte SMSL DO100 (Stereo-DAC)

Als Beispiel nehme ich den SMSL DO100 DAC. Die Firma Foshan ShuangMuSanLin Technology Co., Ltd. (SMSL) wurde 2009 gegründet und hat ihren Sitz in Shenzhen, China. Im DAC sind gleich zwei ESS Technology ES9038Q2M D/A Chips verbaut. Für USB wurde die XMOS-Lösung der 2. Generation verwendet. Der DAC kann natives DSD512 und PCM 768 kHz / 32 Bit verarbeiten.

Ich werde nachfolgend nur einige Messwerte zeigen. Die vollständige Messreihe kann hier nachgelesen werden: SMSL DO100 Review (Stereo DAC) | Audio Science Review (ASR) Forum

SINAD

SINAD steht für „Signal-to-Noise and Distortion Ratio“ und ist eine wichtige Metrik zur Bewertung der Audioqualität. Diese Kennzahl misst das Verhältnis zwischen dem Nutzsignal, also dem gewünschten Signal, und unerwünschten Signalanteilen wie Rauschen und Verzerrungen.

Mit 120 dB ist der SINAD hervorragend.

SMSL DO100 Review (Stereo DAC) | Audio Science Review (ASR) Forum
Mehrtontest

Der Mehrtontest mit einer Sampling Rate von 192 kHz klopft 32 verschiedenen Frequenzbereiche auf Verzerrungen ab, die in diesem Fall sehr gering sind.

SMSL DO100 Review (Stereo DAC) | Audio Science Review (ASR) Forum
Anti-Aliasing-Filter

Bei einem DAC sollen natürlich auch die Spiegelfrequenzen wirksam bedämpft werden. Grundlage ist das Nyquist-Shannon-Abtasttheorem. Dabei wird das Originalsignal mit einer Rate abgetastet, die mehr als doppelt so hoch wie die höchste im Signal vorkommende Frequenz ist. Wird das Abtasttheorem durch eine zu niedrige Abtastrate verletzt, so werden Frequenzanteile, die ursprünglich höher waren als die halbe Abtastrate (Nyquist-Frequenz), als niedrigere Frequenzen interpretiert, da für diese eine Unterabtastung stattfindet. Dieses unerwünschte Phänomen wird Alias-Effekt genannt.

Der Nutzer kann zwischen 7 Filter wählen, die unterschiedlich abrollen und maximal bis -100 dB dämpfen. Die Filter sind beim HQPlayer wesentlich besser, z. B. rollen sie steiler ab und dämpfen bis -200 dB. Das eingeschränkte Filterdesign ist jedoch bei den meisten DAC-Chips so.

SMSL DO100 Review (Stereo DAC) | Audio Science Review (ASR) Forum
Gesamtbewertung

Die weiteren Messwerte um die Linearität, Jitter, etc. fallen auch sehr gut aus, so dass Amir diesen DAC empfiehlt:

Dies ist eine einwandfreie Leistung von SMSL. Jeder Test wird mit Bravour bestanden und lässt keinen Raum für jegliche Beanstandung. Wenn man bedenkt, dass diese State-of-the-Art-Leistung zu relativ geringen Kosten angeboten wird, ist das eine ziemliche Leistung. Es gibt keine Ausrede mehr, sich nicht für volle Transparenz zu entscheiden, Leute.

Es ist mir eine Freude, das SMSL DO100 zu empfehlen.

SMSL DO100 Review (Stereo DAC) | Audio Science Review (ASR) Forum

Signalyst

Die norwegische Firma Signalyst bietet verschiedene HQPlayer Versionen und sogar eine eigene DAC Platine an. Signalyst selbst betreibt kein Forum, sondern nutzt für Ankündigungen und den Support sehr intensiv Foren. Hier ist eine Auswahl:

Die Koryphäe

Jussi Laako ist meines Wissens Mathematiker und hat ebenfalls einen sehr interessanten Lebenslauf:

  • Systemingenieur bei Soft Oy 1997 – 2004
  • Leitender Spezialist bei Nokia 2004 – 2011
  • Leitender Linux-Softwareentwickler Intel Corporation 2011 – 2018

Insbesondere seine Arbeiten bei Intel machen ihn zu einem Experten im Computer Audio Design.

Messwerte SMSL DO100 (Stereo-DAC)

Im Forum S.MS. L D300 Nativer DSD-DAC Test mit Messungen – Seite 3 – DAC – Digital-Analog-Wandlung – Audiophiler Stil (audiophilestyle.com) ist ein Forent auf Auffälligkeiten beim SMSL DO100 gestoßen, welche Jussi Laako (Miska) wie folgt beantwortet hat.

SINAD

In diesem Test des SMSL DO100 hat ein Forent PCM 44,1 kHz (rot) mit DSD256x48 (blau) verglichen. Erwartungsgemäß liegt das Grundrauschen von DSD mit rund -145 dB deutlich unter PCM 44,1 kHz, allerdings kommt es bereits ab 40 kHz zu einem massiven Anstieg des Rauschens.

S.MS. L D300 Nativer DSD-DAC Test mit Messungen – Seite 3 – DAC – Digital-Analog-Wandlung – Audiophiler Stil (audiophilestyle.com)

Lt. Jussi Laako ist dieses Verhalten bei vielen ESS-Chips typisch, wenn der ASRC (Asynchronous Sample Rate Conversion) aktiv ist. Die ASRC ist ein Prozess, der dazu dient, verschiedene digitale Audiosignale mit unterschiedlichen Abtastraten miteinander zu synchronisieren.

Der Chip sollte stattdessen ASRC deaktivieren und IIRC (Intelligent Inference of the Reconstruction Clock) nutzen. Die IIRC-Technologie ist eine Art von Algorithmen und Schaltungen, die zur Reduzierung von Jitter (zeitlichen Verzerrungen) bei der Rekonstruktion des analogen Signals aus dem digitalen Datenstrom verwendet werden. Damit würde der Chip im sogenannten „128fs-Takt“-Modus mit synchronen Takten laufen. Stattdessen läuft im DAC z.B. ein fester 100-MHz-Takt.

Dasselbe Problem führt auch dazu, dass der Chip bei bestimmten Eingangsdaten (PCM-Eingängen) zu einer enormen Rauschspitze um 1 MHz im Ausgang neigt.

1 kHz Testton Frequenzvergleich

Beim Testen des SMSL DO100 mit DSD 256×48 ist ein weiteres Problem aufgetreten. Alles sieht großartig aus, außer dass die tatsächliche Frequenz des Testtons am Ausgang bei Verwendung von 48k-basierten Raten nicht 1 kHz beträgt. Stattdessen sind es bei 1 kHz * 44,1 / 48 = 0,918 kHz:

image.thumb.png.b54ac7eaba7335ac153dbfaa70bd2208.png

S.MS. L D300 Nativer DSD-DAC Test mit Messungen – Seite 3 – DAC – Digital-Analog-Wandlung – Audiophiler Stil (audiophilestyle.com)

Es ist lt. Jussi Laako eine typischer Implementierungsfehler der XMOS USB Audio Class Engine mit dem Referenzcode. Dieser schaltet die Takte nicht um und bleibt stattdessen immer bei der 44,1-Familienclock mit DSD-Eingängen. Der DAC spielt damit etwas langsamer und das ist bei bekannten Stücken natürlich hörbar.

Interpretation

Wie kommt es zu den unterschiedlichen Messergebnissen?

Amir Majidimehr spult bei den Messungen immer das gleiche Programm ab. Es wird stur PCM für den Test genommen und er kommt so beim SMSL DO100 zu hervorragenden Testergebnissen.

Der HQPlayer wurde extra für das PCM zu DSD Upsampling entwickelt, weil das die Delta-Sigma-DACs sowieso machen, nur mit eingeschränkter Qualität. Siehe mein Bericht: Wie arbeitet ein DAC und was kann Upsampling bewirken? Der HQPlayer von Jussi Laako ermöglicht ein geradzahliges Upsampling. Bei einer Quellrate von 44.1 kHz wird beispielsweise geradzahlig auf DSD256 (44.1 x 256 = 11,2896 MHz) hochgerechnet. Bei einer Quellrate von 48 kHz entsprechend geradzahlig auf DSD256x48 (48 x 256 = 12,288 MHz).

Bei DSD256x48 sind beim SMSL DO100 folgende Probleme entstanden:

  1. Der fehlerhafte DAC-Chip führt zu einem erhöhten Rauschen.
  2. Die fehlerhafte XMOS-USB-Implementierung führt zu einer Drift und verlangsamt den DAC.

Fehlervermeidung

Zur Fehlervermeidung ermöglicht der HQPlayer eine Deaktivierung von 48 kHz-Inhalten, so dass dann bei 48 kHz Quellraten immer ungeradzahlig auf DSD hochgerechnet wird.

SMLS bietet auf seiner Homepage Updates an, womit eventuell Fehler behoben werden: SMSL Audio Official -Professional audio product manufacturer (smsl-audio.com)

Zusammenfassung

Foren wie Audio Science Review (ASR) müssen sich natürlich auf einen gewissen Standard des Messverfahrens einigen, damit die Messergebnisse dauerhaft vergleichbar sind. Auf der anderen Seite sind Quellraten von 48 kHz und DSD nicht selten, so dass eine Erweiterung des Testverfahrens zu empfehlen ist.

Dieses Beispiel zeigt sehr schön die Grenzen der Messungen auf. Erst durch die Verwendung anderer Testinhalte konnten die Fehler aufgedeckt werden. Ein erhöhtes Rauschen und die Drift bei 48 kHz Inhalten sind völlig unakzeptabel. Deshalb ist es bei deiner Recherche immer wichtig, unterschiedliche Informationsquellen anzuzapfen. Dies gilt natürlich für alle Geräte.

Letztendlich soll aber immer dein Ohr entscheiden. Denn für mich ist völlig klar, dass nicht alles gemessen wird und (noch) nicht alles gemessen werden kann, was wir hören und wie es unser Gehirn umsetzt.

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de

Veröffentlicht am

Wie Modulatoren den Klang verbessern

Einleitung

In diesem Beitrag geht es um Modulatoren. Du denkst jetzt vielleicht: „Was ist das? Interessiert mich aber auch nicht, weil ich nur bitperfekt im NOS (Non Oversampling) höre“. Ist das mit deinem DAC überhaupt möglich, oder wandelt er vielleicht mehr als du denkst?

Wenn du die Architektur des DACs kennst, kannst du gezielter Verbesserungen vornehmen. Deshalb schauen wir uns einen Delta-Sigma-Chip in der Praxis an. Außerdem hat der HQPlayer einen sensationellen neuen Modulator eingeführt, den ich dir vorstellen möchte.

Grundlagen

Audioformate

Um die Funktion des Modulators richtig einordnen zu können, betrachten wir zunächst die beiden wichtigsten verlustfreien Audioformate PCM und DSD.

PCM-vs-DSD.svgQuelle: Paweł Zdziarski, CC BY 2.5, Link / Direct Stream Digital – Wikipedia

PCM (Pulse Code Modulation)

Das analoge Audiosignal wird periodisch abgetastet, indem es in diskrete Zeitabschnitte unterteilt wird. Diese Abtastwerte werden dann in binärer Form (0/1) kodiert. Dieser Vorgang ordnet dem analogen Wert einen digitalen Wert zu, der dem Amplitudenpegel (Lautstärke) des analogen Signals entspricht.

Die Audio-Abtastrate von 44,1 kHz wurde 1979 von Sony eingeführt und ist aufgrund des CD-Formats (Compact Disc) weit verbreitet. Die Bittiefe der CD beträgt 16 Bit, was einen Dynamikumfang von 96 dB (16 Bit x 6 dB) ermöglicht.

DSD (Direct Stream Digital)

Bei der Delta-Sigma-Modulation (DSD) zeigt jedes 1-Bit-Sample eine positive [1] oder negative [0] Änderung des Amplitudenpegel (Lautstärke) relativ zu seinem vorherigen Wert. Es arbeitet mit einer extrem hohen Abtastrate im Megahertz-Bereich.

Das DSD-Verfahren wurde ursprünglich bei der Super Audio CD (SACD) eingesetzt. Gespeichert wird der direkte Datenstrom eines Delta-Sigma-Modulators, der mit 2,8224 MHz arbeitet. Dies entspricht dem 64-fachen (DSD64) der Abtastrate von 44,1 kHz (Audio-CD/Red Book). Die Bittiefe beträgt 1 Bit, so dass DSD in seiner ursprünglichen Form nicht nachbearbeitet werden kann.

DAC Architektur

Wir konzentrieren uns auf die weit verbreiteten Delta-Sigma-Chips. Es gibt aber auch andere Architekturen, z.B. Ladder (R2R) DACs, die sicherlich einen eigenen Newsletter wert sind.

Delta-Sigma-Chips

Die Delta-Sigma-Modulation ist seit den 1970er Jahren mit den Fortschritten in der CMOS-Technologie kostengünstig realisierbar. Delta-Sigma-Chips werden von vielen großen Halbleiterherstellern als fertige integrierte Schaltungen angeboten. Sehen wir uns das Bild unten näher an:

Oversampling

In einem meist zweistufigen Verfahren wird im DAC ein Oversampling mit und ohne digitale Filter in den gewünschten MHz-Bereich durchgeführt. Dies ist z.B. 5,6448 MHz (44,1kHz x 128 = 5644800 kHz), was DSD128 entspricht. Dieses Oversampling ist zwingend notwendig, da der Delta-Sigma-Modulator nur im Megahertz-Bereich arbeiten kann.

Delta-Sigma-Modulator

In den gängigen Medien wirst du oft einen Modulator für ADC (Analog Digital Converter) finden, zum Beispiel hier: Delta-Sigma-Modulation – Wikipedia. Da wir nicht im Tonstudio sind, sondern Musik hören wollen, interessert uns der umgekehrte Weg.

Die digitalen Samples mit 0 und 1 gehen in den Eingangsdifferenzkonverter, welcher im hexadezimalem Wertbereich arbeitet. Dementsprechend kennt der digitale Modulator nur zwei Werte DRef- und DRef+.

Ein entstehender Messfehler wird integriert (Integrator) und über eine Gegenkopplung (negativ feedback) schrittweise kompensiert. Die Anzahl der Integratoren bzw. die Anzahl der Gegenkopplungsschleifen charakterisieren die Ordnung des ΔΣ-Modulators. Je höher die Ordnung ist, umso stärker wird die Verschiebung des Rauschens, umso höhere Frequenzen können genutzt werden. 

Der Komparator vergleicht, ob sein Eingangssignal größer oder kleiner als ein bestimmter Schwellenwert ist und gibt ein entsprechendes Ein-Bit Signal, den Bitstream aus. Dieser Bitstream wird an einen DDC (Digital-Digital-Converter) solange in eine Gegenkopplungsschleife (negative feedback) abgezweigt, bis die gewünschte Signalqualität erreicht ist. Dieser Zyklus wiederholt sich pro Abtastzyklus.

Digital-Analog-Wandlung

Der fertige Bitstream geht nun an den eigentlichen DAC (Digital-Analog-Converter). Dieser hat die Aufgabe den digitalen Datenstrom in ein analoges Signal zu wandeln. Dabei muss zwingend ein analoger Tiefpassfilter eingesetzt werden.

Die Grundlage für den Filter ist das Nyquist-Shannon-Abtasttheorem, welches nur die halbe Abtastrate (Nyquist-Frequenz) berücksichtigen darf. 

Modulatoren in der Praxis

Beispiel AKM AK4493 Chip

AKM Chips sind weit verbreitet, wie auch die ESS SABRE Chips. Sehen wir uns beispielhaft das Blockschaltbild des folgenden Chips an: AK4493SEQ | Audio D/A Converters | Audio Components | Products | Asahi Kasei Microdevices (AKM). Dieser Chip akzeptiert Quellraten von PCM 32 Bit / 768kHz und DSD512.

Quellformat PCM

PCM wird zuerst in ein Modul DATT (Dynamic Audio Transport Technology) geschoben. Soft Mute dürfte das Absenken der Lautstärke betreffen, vielleicht beim umschalten von Quellraten oder des Audio Formats. Wichtiger ist der Weg zum Modul Interpolator (De-Emphasis ist veraltet und wird nicht mehr benötigt). Der Interpolator rechnet die Quellrate auf die passende Frequenz im Megahertz-Bereich für den Delta-Sigma-Modulator hoch.

Der ΔΣ-Modulator nimmt die Daten in Empfang und erzeugt den in den Grundlagen erläuterten Bitstream, welcher dann über einen analogen Filter (SCF – Switched-Capacitor-Filter) von Digital zu Analog gewandelt wird.

Das bedeutet, dass bei DACs mit diesem oder anderen Delta-Sigma-Chips die Quelldateien im PCM Format zwangsläufig auf DSD umgerechnet werden!

Quellformat DSD

Erhält der AKM Chip Files mit DSD ist eine Umgehung möglich. Wenn bestimmte Bedingungen erfüllt sind, wird der Bitstream direkt dem analogen Filter zugeführt. Ob das in der Praxis funktioniert, ist vom DAC Hersteller abhängig. Manche DACs ermöglichen einen NOS (Non Oversampling) Betrieb, so dass die interne Verarbeitung vollständig umgangen werden kann. Der DAC erledigt dann nur noch seine eigentliche Aufgabe: die Digital-Analog-Wandlung.

NOS-fähige DACs findest du hier: Audio PC Upsampling – unverbindliche Liste von NOS-DACs.

Modulatoren im HQPlayer

Der Schöpfer vom HQPlayer Jussi Laako sagt, nur 50% der Leistung kommt von den digitalen Filtern. Die anderen 50 % stammen aus dem Modulatordesign.

Vorteile externer Modulatoren

Das On-Board-Upsampling erhöht den Jitter im DAC. Weil die Verarbeitung in der Nähe der D/A-Wandlungsstufe EMI/RFI erzeugt. Dadurch wird die eigentliche D/A-Wandlung gestört und Jitter verursacht. Wenn es durch einen externen Modulator stattdessen nur eine minimale On-Board-Verarbeitung gibt, werden EMI/RFI und Jitter reduziert.

Im DAC Chip können mangels Rechenleistung nur recht einfache Filter und Modulatoren umgesetzt werden. Auch wenn Hersteller wie AKM von VELVETSOUND™ technology oder ESS von HyperStream Modulatoren sprechen, handelt es sich vieleicht nur um Modulatoren 3. Ordnung. Das Ziel ist die Umgehung der limitierten internen DAC Verarbeitung.

Der HQPlayer bietet zum Beispiel zahlreiche Modulatoren 7. Ordnung an. Da liegen Welten dazwischen. Dementsprechend hoch ist die Anforderung an die Rechenleistung. Als Faustformel müssen für die anspruchvollsten HQPlayer Modulatoren pro Kanal ein Kern auf mind. 4 GHz getaktet werden. Für Stereo also zwei Kerne.

Für den fis Audio PC ist das kein Problem, da der Intel® Core™ i9-13900K 8 P-Cores hat, die virtuell auf 16 Cores verteilt (Hyper-Threading) eine parallele Verarbeitung ermöglichen.

Neuer HQPlayer Modulator AHM7EC5L

Der neue Modulator AHM7EC5L ermöglicht bei geringerer Rechenleistung eine höhere Abtastrate. Die Bezeichnung ist ein Akronym für Adaptime Hybrid-Modulator, 7. Ordnung, Erweiterte Kompensation, 5-stufig. Dieser Modulator kann nur für DSD1024 und höher eingesetzt werden. Obwohl es sich um einen experimentellen Modulator handelt, ist der Klang bei mir und auch bei anderen überragend!

Meine Wertschätzung für AHM7EC5L @1024 mit dem Holo May DAC. Meiner Meinung nach schlägt es Super @256 oder Light @512 mit Fokus auf saubere, tiefe Basserweiterung und Abbildung

HQ Player – Page 1211 – Software – Audiophile Style

Präzisere Bässe. Ich höre eine bessere Instrumententrennung und mehr Raum.

Which modulator do you use? – Audio Gear Talk / HQ Player – Roon Labs Community

Die Einstellungen können im HQPlayer Client „on the fly“ geändert werden.

Reduzierte Anforderung an die Rechenleistung

Ab der HQPlayer Version 5.0.0 ist positiv festzuhalten, dass die Modulatoren besser wurden und gleichzeitig die Rechenleistung zum Teil reduziert werden konnte. Der Modulator AHM7EC5L fällt in diese Kategorie.

In einem recht anspruchsvollen Szenario wird vom HQPlayer eine 44,1 kHz Datei mit dem Filter:

sinc-MGaApodisierender Gaußscher Konstantzeitfilter mit einer Million Taps bei 16- facher PCM-Ausgangsrate. Mit extrem hoher Dämpfung (65536 Umrechnungsverhältnis). Ähnlich zu poly-sinc-gauss-xla.

auf DSD1024 hochgerechnet.

Im Bild unten ist rechts die Auslastung mit 16 P-Cores (1-16) und den 2 E-Cores (17-18) zu sehen. Die P-Cores laufen auf max. 4,4 GHz, um eine energieeffiziente Verarbeitung zu erreichen. Möglich währen sogar 5,8 GHz, die hier aber nicht benötigt werden. Es ist immer gut eine CPU weit unter ihren Spezifikationen zu betreiben. Die zwei E-Cores werden nur für geringe Hintergrundaktivitäten eingesetzt. Die restlichen E-Cores (14 von 16) wurden im BIOS zur Energieeinsparung und Latenzminimierung deaktiviert. Die Auslastung der Kerne mit den Modulatoren ist mit je 40% (Kerne 1 und 9) moderat, die Gesamtbelastung ist mit 14% auch nicht hoch.

Zusammenfassung

Auch wenn das Audioformat PCM (Pulse Code Modulation) ist, wird es von den meisten DAC Chips zu DSD (Direct Stream Digital) gewandelt. Wenn du ein überzeugter NOS Hörer bist, schau dir die Architektur deines DACs an. Wenn ein Delta-Sigma-Chip verbaut ist, hörst du bei PCM kein NOS!

Bei einem Delta-Sigma-Chip wie z.B. AKM AK4493 ist es besser, DSD als Quellformat zu verwenden, da der Chip PCM zwangsläufig in DSD umwandelt. Mit DSD als Quelle werden die vergleichsweise einfachen Interpolatoren und Modulatoren des DAC-Chips umgangen.

Die Reduzierung der Verarbeitung im DAC Chip minimiert außerdem EMI/RFI und es wird dadurch weniger Jitter erzeugt.

Dabei musst du keine DSD Files kaufen oder streamen. Die meisten Audiofiles liegen sowieso in PCM vor, weil sich diese noch im Tonstudio digital nachbearbeiten lassen. Aber auch bei dir zum Beispiel mit Raumkorrekturfiltern und digitaler Lautstärkeregelung. Nutze einfach einen leistungsfähigen Audio PC und qualitativ hochwertige Filter und Modulatoren wie im HQPlayer. In Echtzeit wird PCM zu DSD gewandelt. Der DAC sieht dann das ursprüngliche Quellmaterial PCM gar nicht mehr, sondern nur noch DSD.

Der neue HQPlayer Modulator AHM7EC5L ist für mich im Moment der beste Modulator für DSD1024. Und das gleichzeitig mit reduzierter Rechenleistung. Aber auch andere Modulatoren bei geringerer Abtastrate sind in der Regel besser als im DAC. Mache dich vom DAC Design unabhängig. Nutze einen NOS fähigen DAC und freue dich über die Vielfalt der Möglichkeiten zur digitalen Musikaufbereitung. Je nach Stimmung und Musikgenre kannst du unterschiedliche Filter nutzen. Und bei Updates bist du immer mit dabei. Dafür haben wir den fis Audio PC konstruiert.

Weitere Fundstellen

Zum Vertiefen des Themas findest du einiges in unseren Audio PC Grundlagen:

Du hast Fragen oder möchtest etwas beitragen? Schreibe uns: Kontaktformular
Oder schreibe per E-Mail an: info@griggaudio.de