Digitale Datenverarbeitung und Ăśbertragung
Im Chip befinden sich die Transistoren, welche Binärcodes verarbeiten. Das sind zwei gegensätzliche Zustände, welchen in einer 0 und 1 dargestellt werden können. Jeder dieser Transistoren wird dabei als eine Art elektronischer Schalter eingesetzt, um einen Teilstrom ein- oder auszuschalten.
Die Binärcodes müssen über die Leiterbahnen der Platine, auf dem der Chip sitzt, transportiert werden. Und von der Platine gehen die Daten über Schnittstellen rein oder raus. Zum Beispiel per USB oder Ethernet zu deinem DAC.
Bei Ethernet hast du vielleicht schon Bilder mit dem sogenannten Eye pattern oder Augenmusterdiagramm gesehen. Diese Messungen lassen Rückschlüsse auf die Qualität des Signals zu. Dabei wird mit einem Oszilloskop die Überlagerung aufeinanderfolgender Wellenformen zu einem zusammengesetzten Bild erstellt. Im Bild unten wird auf der Ordinate (y-Achse vertikal) der Spannungszustand definiert, ab der eine binäre 0 oder 1 anliegt. Auf der Abszisse (x-Achse horizontal) ist der Zeitverlauf angegeben. Über die Spannungszustände und dem Zeitverlauf ergibt sich so zum Beispiel eine Bitsequenz von 011 (Gelb).
Wenn sich über die verschiedenen Bitsequenzen auf dem Oszilloskop in der Mitte ein großes Auge erkennen lässt, ist die Signalqualität in Ordnung. Störungen in den Spannungsverläufen, zum Beispiel Verschiebungen durch Jitter oder eine zu geringe Steilheit in den Flanken können zu Fehlinterpretationen der Bitsequenzen führen. Durch die Prüfsummen wird das fehlerhafte Datenpaket zwar erkannt, aber wenn das zu oft passiert, stresst das die CPU und es gehen Datenpakete verloren.
Wir halten fest, dass die binären Daten in einer analogen Technik übertragen werden. Saubere Spannungszustände im Stromfluss sind entscheidend für die binäre 0 oder 1.
Ripple Noise (Welligkeitsrauschen)
Die Welligkeiten sind AC-Schwankungen (Wechselstrom periodisch) und das Rauschen (zufällig), die in den DC-Schienen (Gleichstrom) eines Netzteils zu finden sind. Die Welligkeit verringert die Lebensdauer von Kondensatoren erheblich, da sie ihre Temperatur erhöht. Auch spielt die Welligkeit eine wichtige Rolle bei der Stabilität des Gesamtsystems, insbesondere wenn die CPU übertaktet wird.
Am schlimmsten sind die hörbaren Auswirkungen der Welligkeit, weil die Brummfrequenz und ihre Harmonischen innerhalb des Audiobandes liegen! Die Welligkeitsgrenzen betragen laut ATX-Spezifikation 120 mV fĂĽr die 12V-Schienen und 50 mV fĂĽr den Rest (5V und 3,3V). Zuviel fĂĽr die Audio Wiedergabe. Das lineare Netzteil OPTIMO S ATX – JCAT hat stattdessen ein Ripple Noise von weniger als 0,025 mV.
Mögliche klangliche Auswirkungen
In der Theorie kommen alle Daten bitperfekt an, weil es Prüfsummen gibt und bei Fehlern die Datenpakete neu angefordert werden. Außerdem sorgen Puffer in den Schnittstellen für eine asynchrone Datenübertragung. Daher behaupten viele, dass Digital gegen Klangveränderungen immun ist.
In der Praxis können Störungen in der Stromversorgung jedoch für hohen Jitter sorgen und die Wellen driften auseinander. Oder die notwendige Flankensteilheit ist nicht mehr gegeben. Kann der Controller die Spannungszustände nicht mehr zuverlässig zwischen einer 0 und einer 1 unterscheiden, erkennen Prüfsummenprotokolle den Fehler. Reicht bei Fehlern die Zeit für eine Neuanforderung der Daten jedoch nicht mehr aus, sind hörbare Kratzer wie von einer Schallplatte, sowie Drop Outs die Folge, weil Datenpakete verloren gegangen sind.
Ein weiterer Punkt ist das elektrische Rauschen (thermisches Rauschen), welches zunimmt, wenn die CPU gestresst wird. Es können zusätzlich Interrupts entstehen, welche andere Prozesse stoppen. Dies führt zu hohen Latenzen, die sich auf eine Musikwiedergabe sehr störend auswirken können.
Ein oft nicht bedachter Nebeneffekt ist die Weitergabe des Ripple Noise über die Masseleitung an angeschlossene Geräte. Das kann über die (ungefilterte) Stromversorgung geschehen, aber auch über kupfergebundene Datenkabel wie LAN, USB, S/P-DIF, etc. Wenn das Welligkeitsrauschen in den DAC oder/und in den Verstärker gelangt, bewegen wir uns im hörbaren analogen Bereich.